主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
田枫,沈旭昆.一种适合弱标签数据集的图像语义标注方法.软件学报,2013,24(10):2405-2418
一种适合弱标签数据集的图像语义标注方法
Image Semantic Annotation Method for Weakly Labeled Dataset
投稿时间:2012-12-01  修订日期:2013-05-03
DOI:10.3724/SP.J.1001.2013.04424
中文关键词:  图像语义标注  弱标签数据集  测度学习  非负稀疏编码  语义近邻
英文关键词:image semantic annotation  weakly labeled dataset  metric learning  nonnegative sparse coding  semantic nearest neighbor
基金项目:国家自然科学基金(61170132, 60533070); 国家高技术研究发展计划(863)(2009AA012103)
作者单位E-mail
田枫 虚拟现实技术与系统国家重点实验室(北京航空航天大学), 北京 100191
东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318 
tianfeng80@gmail.com 
沈旭昆 虚拟现实技术与系统国家重点实验室(北京航空航天大学), 北京 100191  
摘要点击次数: 1846
全文下载次数: 2559
中文摘要:
      真实环境下数据集中广泛存在着标签噪声问题,数据集的弱标签性已严重阻碍了图像语义标注的实用化进程.针对弱标签数据集中的标签不准确、不完整和语义分布失衡现象,提出了一种适用于弱标签数据集的图像语义标注方法.首先,在视觉内容与标签语义的一致性约束、标签相关性约束和语义稀疏性约束下,通过直推式学习填充样本标签,构建样本的近似语义平衡邻域.鉴于邻域中存在噪声干扰,通过多标签语义嵌入的邻域最大边际学习获得距离测度和图像语义的一致性,使得近邻处于同一语义子空间.然后,以近邻为局部坐标基,通过邻域非负稀疏编码获得目标图像和近邻的部分相关性,并构建局部语义一致邻域.以邻域内的语义近邻为指导并结合语境相关信息,进行迭代式降噪与标签预测.实验结果表明了方法的有效性.
英文摘要:
      Automatic semantic annotation, which automatically annotates images with semantic labels has received much research interest. Although it has been studied for years, image annotation is still far from practical. The effectiveness of traditional image annotation techniques heavily relies on the availability of a sufficiently large set of correct, complete and balanced labeled samples, which typically come from users in an interactive manual process. However, in real world environment, image labels are often incomplete, noisy and imbalanced. This paper investigates the usefulness of weakly labeled information and proposes an image annotation method for weakly labeled dataset. First, the missing labels are automatically filled by a transductive method which incorporates label correlation and semantic sparsity, along with the consistency of visual and semantic similarity. Then approximate semantic balanced neighborhood is constructed. A distance metric learning method for large margin nearest neighbor embedded in multiple labels is supplied, making the retrieved neighbors by this metric appear in the same semantic subspace. Local semantic consistent neighborhood is obtained by local nonnegative sparse coding. Meanwhile, an iterative denoising method for label inference is proposed to simultaneously handle the noise and annotate images under the guidance of semantic nearest neighbors and contextual information. Experimental results demonstrate the effectiveness and capability of the proposed method.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利