主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2019-2020年专刊出版计划 微信服务介绍 最新一期:2019年第2期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
左利云,曹志波,董守斌.云计算虚拟资源的熵优化和动态加权评估模型.软件学报,2013,24(8):1937-1946
云计算虚拟资源的熵优化和动态加权评估模型
Virtual Resource Evaluation Model Based on Entropy Optimized and Dynamic Weighted in Cloud Computing
投稿时间:2012-06-19  修订日期:2012-12-27
DOI:10.3724/SP.J.1001.2013.04364
中文关键词:  云计算  虚拟资源评估    动态负载  多目标优化
英文关键词:cloud computing  virtual resource evaluation  entropy  dynamic load  multi-objective optimization
基金项目:国家自然科学基金(61070092)
作者单位E-mail
左利云 广东省石化装备故障诊断重点实验室(广东石油化工学院), 广东 茂名 525000
广东省计算机网络重点实验室(华南理工大学), 广东 广州 510641 
 
曹志波 广东省计算机网络重点实验室(华南理工大学), 广东 广州 510641  
董守斌 广东省计算机网络重点实验室(华南理工大学), 广东 广州 510641 sbdong@scut.edu.cn 
摘要点击次数: 2363
全文下载次数: 3152
中文摘要:
      云资源的动态变化和不确定性给资源管理及任务调度带来了很大的困难.为了准确地掌握资源动态负载和可用能力信息,提出一种基于熵优化和动态加权的资源评估模型,其中,熵优化模型利用最大熵和熵增原理的目标函数及约束条件,筛选出满足用户QoS 和系统最大化的资源,实现最优调度,保障用户QoS.对筛选后的资源再进行动态加权负载评估,对负载过重及长期不可用资源进行迁移、释放等,可减少能耗,实现负载均衡和提高系统利用率.设计了仿真实验,以验证所提评估模型的性能.实验结果表明,熵优化模型对用户QoS 和系统最大化有很好的效果,动态加权负载评估有利于均衡负载,提高系统利用率.该评估模型实现了用户QoS 保障、减少能耗、负载均衡以及提高系统利用率等多目标的优化.
英文摘要:
      The dynamic and uncertainty of cloud resource makes resource allocation and task scheduling more difficult. In order to retrieve accurate resource information about dynamic loads and available capacity, this study proposes a resource evaluation model based on entropy optimization and dynamic weighting. The entropy optimization filters the resources that satisfy user QoS and system maximization by goal function and constraints of maximum entropy and the entropy increase principle, which achieves optimal scheduling and satisfied user QoS. Then the evaluation model evaluates the load of having filtered resources by dynamic weighted algorithm. In order to reduce energy consumption, achieve load balancing and improve system utilization, the study allows the migration or release the resources which overload and unavailable for a long time. Experimental results show the effect of entropy optimization on user QoS and system maximization, and dynamic weighted algorithm benefits load balancing and system utilization. The experimental results prove that the evaluation model achieves multi-objective optimization such as satisfying user QOS, reducing energy assumption, balancing load, improving system utilization and so on.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利