主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第8期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
王海峰,陈庆奎.静态程序切片的GPU通用计算功耗预测模型.软件学报,2013,24(8):1746-1760
静态程序切片的GPU通用计算功耗预测模型
Power Consumption Prediction Model of General-Purpose Computing GPU with Static Program Slicing
投稿时间:2012-08-03  修订日期:2012-10-19
DOI:10.3724/SP.J.1001.2013.04361
中文关键词:  功耗模型  GPU 计算  非线性回归  程序切片  小波神经网络
英文关键词:power consumption model  GPU computing  no-linear regression  program slicing  wavelet neural network
基金项目:国家自然科学基金(60970012); 教育部博士点专项基金(20113120110008); 上海重点科技攻关项目(09511501000,09220502800); 上海市一流学科建设项目(XTKX2012)
作者单位E-mail
王海峰 上海理工大学 管理学院, 上海 200093
临沂大学 信息学院, 山东 临沂 276000 
 
陈庆奎 上海理工大学 光电信息与计算机工程学院, 上海 200093
上海理工大学 管理学院, 上海 200093 
chenqingkui@gmail.com 
摘要点击次数: 2542
全文下载次数: 3078
中文摘要:
      随着图形处理器通用计算的发展,GPU(graphics processing unit)通用计算程序功耗的度量与优化成为绿色计算领域中的一个基础问题.当前,GPU 计算能耗评测主要通过硬件来实现,而开发人员无法在编译之前了解应用程序能耗,难以实现能耗约束下的代码优化与重构.为了解决开发人员评估应用程序能耗的问题,提出了针对应用程序源代码的静态功耗预测模型,根据分支结构的疏密程度以及静态程序切片技术,分别建立分支稀疏和稠密两类应用程序的功耗预测模型.程序切片是介于指令与函数之间的度量粒度,在分析GPU应用程序时具有较强的理论支持和可行性.用非线性回归和小波神经网络建立两种切片功耗模型.针对特定GPU 非线性回归模型的准确性较好.小波神经网络预测模型适合各种体系的GPU,具有较好的通用性.对应用程序分支结构进行分析后,为分支稀疏程序提供加权功率统计模型,以保证功耗评估算法的效率.分支稠密程序则采用基于执行路径概率的功耗预测法,以提高预测模型的准确性.实验结果表明,两种预测模型及算法能够有效评估GPU 通用计算程序的功耗,模型预测值与实际测量值的相对误差低于6%.
英文摘要:
      With the development of general-purpose computing of GPUs (graphics processing units), power consumption measurements and optimization have become an essential issue in the green computing field. The current power consumption of GPUs is mainly measured by the hardware. However the programmers have had difficulty understanding the power consumption profile of the applications used to optimize and refactor before the compile phase. To solve this issue, power consumption models were proposed for GPU applications with regard to sparseness- branch and denseness-branch programs based on program slicing, respectively. The program slicing is fine-grained level that lies between the function and the instruction levels and has good feasibility and accuracy in the power consumption estimation. The power consumption prediction models for program slicing were proposed through no-linear regression and wavelet neural networks. To specific GPUs, the power prediction model based on no-linear regression is more precise than the prediction model based on wavelet neural networks. However the wavelet neural networks model has better generality to various kinds of GPUs. After analyzing the structure of the applications, the weighted power model for sparseness-branch programs was provided to achieve better effectiveness. The probability slicing power model for denseness-branch programs was also proposed to improve the accuracy that is based on the probability of the execution paths. The results indicate that the two different models can effectively predict the power consumption. And the average relative error between the predicted value and the measured value is less than 6%.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利