主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2019-2020年专刊出版计划 微信服务介绍 最新一期:2019年第2期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
郭昆,张岐山.基于聚类的快速数据流匿名方法.软件学报,2013,24(8):1852-1867
基于聚类的快速数据流匿名方法
Fast Clustering-Based Anonymization Algorithm for Data Streams
投稿时间:2011-07-29  修订日期:2012-03-23
DOI:10.3724/SP.J.1001.2013.04330
中文关键词:  数据匿名  数据流  聚类
英文关键词:data anonymization  data stream  clustering
基金项目:国家自然科学基金(70871024); 福建省自然科学基金(2010J01358); 福州大学科技发展基金(201-xy-16)
作者单位E-mail
郭昆 福州大学 数学与计算机科学学院, 福建 福州 350108  
张岐山 福州大学 管理学院, 福建 福州 350108 zhangqs@fzu.edu.cn 
摘要点击次数: 2142
全文下载次数: 2287
中文摘要:
      为了防止敏感信息的泄漏,保护用户隐私,常采用概化和抑制等技术在共享数据前对其准标识符进行匿名化.与静态数据集不同,数据流具有潜在无限、高度动态等特性,使得数据流匿名需要解决更加复杂的问题,不能直接应用静态数据集的匿名方法.在分析现有数据流匿名方法的基础上,提出一种采用聚类思想进行数据流匿名的方法,通过单遍扫描数据识别和重用满足匿名条件的簇,以实现数据流的快速匿名.真实数据集上的实验结果表明,该方法在满足匿名要求的同时能够降低概化和抑制处理带来的信息损失,并且具有较低的时间和空间复杂度.
英文摘要:
      In order to prevent the disclosure of sensitive information and protect users’ privacy, the generalization and suppression of technology is often used to anonymize the quasi-identifiers of the data before its sharing. Data streams are inherently infinite and highly dynamic which are very different from static datasets, so that the anonymization of data streams needs to be capable of solving more complicated problems. The methods for anonymizing static datasets cannot be applied to data streams directly. In this paper, an anonymization approach for data streams is proposed with the analysis of the published anonymization methods for data streams. This approach scans the data only once to recognize and reuse the clusters that satisfy the anonymization requirements for speeding up the anonymization process. Experimental results on the real dataset show that the proposed method can reduce the information loss that is caused by generalization and suppression and also satisfies the anonymization requirements and has low time and space complexity.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利