主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
章宗长,陈小平.杂合启发式在线POMDP 规划.软件学报,2013,24(7):1589-1600
杂合启发式在线POMDP 规划
Hybrid Heuristic Online Planning for POMDPs
投稿时间:2012-02-13  修订日期:2012-03-27
DOI:10.3724/SP.J.1001.2013.04318
中文关键词:  部分可观察的马氏决策过程  在线规划  杂合启发法
英文关键词:partially observable Markov decision process (POMDP)  online planning  hybrid heuristics
基金项目:国家自然科学基金(60745002, 61175057); 国家高技术研究发展计划(863)(2008AA01Z150)
作者单位E-mail
章宗长 中国科学技术大学 计算机科学与技术学院, 安徽 合肥 230027 zzz@mail.ustc.edu.cn 
陈小平 中国科学技术大学 计算机科学与技术学院, 安徽 合肥 230027  
摘要点击次数: 2533
全文下载次数: 2636
中文摘要:
      许多不确定环境下的自主机器人规划任务都可以用部分可观察的马氏决策过程(partially observableMarkov decision process,简称POMDP)建模.尽管研究者们在近似求解技术的设计方面已经取得了显著的进展,开发高效的POMDP 规划算法依然是一个具有挑战性的问题.以前的研究结果表明:在线规划方法能够高效地处理大规模的POMDP 问题,因而是一类具有研究前景的近似求解方法.这归因于它们采取的是“按需”作决策而不是预前对整个状态空间作决策的方式.旨在通过设计一个新颖的杂合启发式函数来进一步加速POMDP 在线规划过程,该函数能够充分利用现有算法里一些被忽略掉的启发式信息.实现了一个新的杂合启发式在线规划(hybrid heuristiconline planning,简称HHOP)算法.在一组POMDP 基准问题上,HHOP 有明显优于现有在线启发式搜索算法的实验性能.
英文摘要:
      Lots of planning tasks of autonomous robots under uncertain environments can be modeled as a partially observable Markov decision processes (POMDPs). Although researchers have made impressive progress in designing approximation techniques, developing an efficient planning algorithm for POMDPs is still considered as a challenging problem. Previous research has indicated that online planning approaches are promising approximate methods for handling large-scale POMDP domains efficiently as they make decisions “on demand”, instead of proactively for the entire state space. This paper aims to further speed up the POMDP online planning process by designing a novel hybrid heuristic function, which provides a feasible way to take full advantage of some ignored heuristics in current algorithms. The research implements a new method called hybrid heuristic online planning (HHOP). HHOP substantially outperformes state-of-the-art online heuristic search approaches on a suite of POMDP benchmark problems.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利