 |
|
|
|
 |
 |
 |
|
 |
|
 |
|
|
郑宇军,陈胜勇,凌海风,徐新黎.多Agent 主从粒子群分布式计算框架.软件学报,2012,23(11):3000-3008 |
多Agent 主从粒子群分布式计算框架 |
Multi-Agent Based Distributed Computing Framework for Master-Slave Particle Swarms |
投稿时间:2012-06-09 修订日期:2012-08-21 |
DOI:10.3724/SP.J.1001.2012.04305 |
中文关键词: agent 粒子群优化 主从模型 协同进化 分布式计算 |
英文关键词:agent particle swarm optimization (PSO) master-slave model cooperative evolution distributed computing |
基金项目:国家自然科学基金(61105073, 61173096, 61103140, 61020106009, 61070043); 浙江省自然科学基金(R1110679) |
|
摘要点击次数: 5577 |
全文下载次数: 4807 |
中文摘要: |
面向大规模复杂优化问题,提出了一个基于并行粒子群优化的分布式Agent 计算框架.框架中使用一个主群(master swarm)来演化问题的完整解,并使用一组从群(slave swarm)来并行优化一组子问题的解,主群和从群通过交替执行来提高问题的求解效率.采用异步组结构,主群/从群中的各类Agent 共享一个解群,并通过相互协作,对解群进行构造、改进、修补、分解和合并等演化操作.该框架可用于求解复杂的约束多目标优化问题.通过一类典型运输问题上的实验,其结果表明,所提出的方法明显优于另外两种先进的演化算法. |
英文摘要: |
To effectively solve large-scale optimization problems, the paper proposes a distributed agent computing framework based on the parallel particle swarm optimization (PSO). The framework uses a master swarm for evolving complete solutions of the problem, and uses a set of slave swarms for evolving sub-solutions of the subproblems concurrently. The master swarm and slave swarms alternatively implement the PSO procedure to improve the problem-solving efficiency. Using the asynchronous team based agent architecture, a master/slave swarm consists of different kinds of agents, which share a population of solutions and cooperate to evolve the population, such as initializing solutions, moving particles, handling constraints, and decomposing/synthesizing sub-solutions. The framework can be used to solve complicated constained and multiobjective optimization problems efficiently. Experimental results demonstrate that this approach has significant performance advantage over two other state-of-the-art algorithms on a typical transportation problem. |
HTML 下载PDF全文 查看/发表评论 下载PDF阅读器 |
|
|
|
|
|
|
 |
|
|
|
|
 |
|
 |
|
 |
|