主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
魏唯,欧阳丹彤,吕帅.基于缩减信念状态的Conformant 规划方法.软件学报,2013,24(7):1557-1570
基于缩减信念状态的Conformant 规划方法
Conformant Planning Based on Reducing Belief States
投稿时间:2011-07-20  修订日期:2012-05-18
DOI:10.3724/SP.J.1001.2013.04289
中文关键词:  Conformant 规划问题  信念状态  增强爬山  启发式搜索
英文关键词:Conformant planning  belief state  enforced hill-climbing  heuristic search
基金项目:国家自然科学基金(61133011, 60973089, 61003101, 61170092, 61272208); 国家教育部博士点专项基金(20100061110031); 吉林省科技发展计划(20101501, 20100185, 201101039); 浙江师范大学计算机软件与理论省级重中之重学科开放基金(ZSDZZZZXK12); 浙江省自然科学基金(Y1100191)
作者单位E-mail
魏唯 吉林大学 计算机科学与技术学院, 吉林 长春 130012
符号计算与知识工程教育部重点实验室(吉林大学), 吉林 长春 130012 
 
欧阳丹彤 吉林大学 计算机科学与技术学院, 吉林 长春 130012
符号计算与知识工程教育部重点实验室(吉林大学), 吉林 长春 130012 
ouyd@jlu.edu.cn 
吕帅 吉林大学 计算机科学与技术学院, 吉林 长春 130012
符号计算与知识工程教育部重点实验室(吉林大学), 吉林 长春 130012 
 
摘要点击次数: 2406
全文下载次数: 2142
中文摘要:
      Conformant 规划问题通常转化为信念状态空间的搜索问题来求解.提出了通过降低信念状态的不确定性来提高规划求解效率的方法.首先给出缩减信念状态的增强爬山算法,在此基础上,提出了基于缩减信念状态的Conformant 规划方法,设计了CFF-Lite 规划系统.该规划器的求解过程包括两次增强爬山过程,分别用于缩减信念状态和搜索目标.首先对初始信念状态作最大程度的缩减,提高启发函数的准确性;然后从缩减后的信念状态开始执行启发式搜索.实验结果表明,CFF-Lite 规划系统通过快速缩减信念状态降低了问题的求解难度,在大多数问题上,求解效率和规划解质量与Conformant-FF 相比,都有显著的提高.
英文摘要:
      Conformant planning is usually transformed into a search problem in the space of belief states. In this paper, a method which can improve efficiency of planning by reducing the nondeterministic degree of belief states is proposed. An enforced hill-climbing algorithm for reducing belief states is presented first. Then, the method of Conformant planning based on reducing belief states is proposed. A planner named CFF-Lite implements this idea and is designed. The planner includes two phases of enforced hill-climbing which are used to reduce belief states and search the goal respectively. Before the search phase, the initial belief state is reduced furthest to an intermediate state which is much more deterministic. Next, the precision of heuristic information is improved and the heuristic search phase is performed. Experimental results show that the CFF-Lite planner can decrease the difficulty of Conformant planning problems by reducing belief states and with most of the test problems this method outperforms Conformant-FF in both planning efficiency and planning quality.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利