主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
王进,阳小龙,隆克平.基于大偏差统计模型的Http-Flood DDoS 检测机制及性能分析.软件学报,2012,23(5):1272-1280
基于大偏差统计模型的Http-Flood DDoS 检测机制及性能分析
Http-Flood DDoS Detection Scheme Based on Large Deviation and Performance Analysis
投稿时间:2011-04-13  修订日期:2011-06-20
DOI:10.3724/SP.J.1001.2012.04068
中文关键词:  IP 网络  分布式拒绝服务  大偏差
英文关键词:IP network  distributed denial of service (DDoS)  large deviation
基金项目:国家重点基础研究发展计划(973)(2012CB315905); 国家自然科学基金(60873263, 60932005, 61172048, 61100184); 教育部新世纪优秀人才计划(NCET-09-0268); 四川省青年科技基金(09ZQ026-032); 成都市科技局项目; 成都大学校基金(2010XJZ35)
作者单位E-mail
王进 电子科技大学 光互联网及移动信息网络研究中心,四川 成都 611731
成都大学 网络中心,四川 成都 610106 
 
阳小龙 电子科技大学 光互联网及移动信息网络研究中心,四川 成都 611731
北京科技大学 计算机与通信工程学院,北京 100083 
yxl@uestc.edu.cn 
隆克平 电子科技大学 光互联网及移动信息网络研究中心,四川 成都 611731
北京科技大学 计算机与通信工程学院,北京 100083 
 
摘要点击次数: 2688
全文下载次数: 3482
中文摘要:
      针对Http 洪泛Web DDoS(distributed denial of service)攻击,提出了一种检测机制.该机制首先采用型方法量化处理用户访问的网页序列,以得到用户访问不同网页的实际点击概率分布;然后,利用大偏差统计模型分析了用户访问行为的实际点击概率分布与网站先验概率分布的偏差;最后,依据大偏差概率检测恶意DDoS 攻击.对该机制的性能进行仿真,结果表明,正常用户的大偏差概率大于恶意攻击者,并且大部分正常用户的大偏差概率大于10-36,而大部分恶意攻击者的大偏差概率则小于10-40.由此,该机制能够有效地检测Http 洪泛Web DDoS 攻击,当检测门限设置为10-60 时,其有效检测率可达97.5%,而误检率仅为0.6%.另外,将该机制与基于网页转移概率的检测方法进行性能比较,结果表明,该检测机制的检测率优于基于网页专业概率的检测机制,并且在误检率小于5%的情况下,该机制的检测率比现有检测机制提高0.6%.
英文摘要:
      This paper focuses on Http-Flood DDoS (distributed denial of service) attack and proposes a detection scheme based on large deviation statistical model. The detection scheme characterizes the user access behavior with its Web-pages accessed and adopts the type method quantizing user’s access behavior. Based on this quantization method, this study analyzes the deviation of ongoing user’s empirical access behavior from the website’s priori one with large deviation statistical model, and detects Http-Flood DDoS with large deviation probability. This paper also provides preliminary simulation regarding the efficiency of the scheme, and the simulation results show that the large deviation of most normal Web surfers is larger than 10-36, yet, the attacker’s is smaller than 10-40. Thus, this scheme is promising to detect Http-Flood DDoS. Specifically, the scheme can achieve 0.6% false positive and 97.5% true positive with detection threshold of 10-60. And compared with the existing detection methods, this detection scheme can outperform them in detection performance. In particular, this scheme can improve the true positive ratio 0.6% over the transition probability based detection scheme with the false positive below 5%.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利