主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第8期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
陈蓉伟,刘芳,郝红侠.基于EHMM-HMT和MSWHMT的多尺度纹理图像分割.软件学报,2010,21(9):2206-2223
基于EHMM-HMT和MSWHMT的多尺度纹理图像分割
Multi-Scale Texture Image Segmentation Based on EHMM-HMT and MSWHMT Models
投稿时间:2008-10-17  修订日期:2009-03-31
DOI:
中文关键词:  EHMM-HMT  统计信息  MSWHMT  边界检测  纹理图像分割
英文关键词:EHMM-HMT  statistical information  MSWHMT  boundary detection  texture image segmentation
基金项目:Supported by the National Natural Science Foundation of China under Grant Nos.60673097, 60601029, 60672126, 60702062 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant Nos.2008AA01Z125, 2007AA12Z136, 2007AA12Z223 (国家高技术研
作者单位
陈蓉伟  
刘芳  
郝红侠  
摘要点击次数: 3880
全文下载次数: 3453
中文摘要:
      纹理图像具有微观不规则但宏观存在某种统计规律性的特点.在图像分割中,为了捕捉此特性来改善分割效果,提出了EHMM-HMT(enhanced hidden Markov model-hidden Markov tree)和MSWHMT(multi-states weighted hidden Markov tree)模型的多尺度贝叶斯纹理图像分割方法.该方法通过EHMM模型有效地描述了图像块间的相互作用关系,在最粗尺度上并运用EHMM-HMT模型得到了有利于保持区域一致性的初分割.然后,为了减少初分割对边界
英文摘要:
      Texture images have abnormal, microscopic characteristics, but some parts of the image maintain statistical regularity from a macroscopic point of view. In order to capture these characteristics that improve image segmentation results, a new wavelet-based, multi-scale Bayesian texture image segmentation method, based on EHMM-HMT (enhanced hidden Markov model-hidden Markov tree) and MSWHMT (multi-states weighted hidden Markov tree) modes, is proposed. The image blocks’ relative interactions are described through the EHMM model effectively, and the homogenous raw segmentation, propitious to final fusion, is obtained on the coarsest scale. Subsequently, in order to reduce mislabeling the boundaries of raw segmentation and to decrease the computing complexity of the model, the MSWHMT model is proposed with better raw segmentations of high accurate boundary detection put on finer scales. Finally, a pixel level segmentation is reached through a multi-scale Bayesian fusing strategy that combines with the boundaries. The method is compared to HMTseg, HMT (boundar based+MAP), and EHMM-HMT (MAP) algorithm through several micro-texture images to demonstrate its competitive performance. It has also been found to improve the accuracy of macro-texture image segmentations.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利