主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
杨咚咚,焦李成,公茂果,余航.求解偏好多目标优化的克隆选择算法.软件学报,2010,21(1):14-33
求解偏好多目标优化的克隆选择算法
Clone Selection Algorithm to Solve Preference Multi-Objective Optimization
投稿时间:2008-08-25  修订日期:2008-12-29
DOI:
中文关键词:  人工免疫系统  偏好多目标优化  偏好等级  ε支配
英文关键词:artificial immune system  preference multi-objective optimization  preference rank  ε dominance
基金项目:Supported by the National Natural Science Foundation of China under Grant Nos.60703107, 60703108 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2009AA12Z210 (国家高技术研究发展计划(863)); the National Basic Research Program of China under Grant No.2006CB705707 (国家重点基础研究发展计划(973)); the Program for Cheung Kong Scholars and Innovative Research Team in University of China under Grant No.IRT0645 (长江学者和创新团队支持计划)
作者单位
杨咚咚 西安电子科技大学 智能信息处理研究所,陕西 西安 710071
智能感知与图像理解教育部重点实验室(西安电子科技大学),陕西 西安 710071 
焦李成  
公茂果  
余航  
摘要点击次数: 6967
全文下载次数: 7477
中文摘要:
      目标维数较高的多目标优化问题的难题在于非支配解急剧增加,经典算法由于缺乏足够的选择压力导致性能急剧下降.提出了基于偏好等级的免疫记忆克隆选择优化算法,用于解决目标维数较高的多目标优化问题.利用决策者提供的偏好信息来为抗体分配偏好等级,根据该值比例克隆抗体,增大抗体的选择压力,加快收敛速率.根据偏好信息来缩减Pareto前沿,并用有限的偏好解估计该前沿.同时,建立了免疫记忆种群来保留较好的非支配抗体,采用ε支配机制来保持记忆抗体种群的多样性.实验结果表明,对于2目标的偏好多目标问题以及高达8目标的DTLZ2和DTLZ3问题,该算法取得了一定的实验效果.
英文摘要:
      The difficulty of current multi-objective optimization community lies in the large number of objectives. Lacking enough selection pressure toward the Pareto front, classical algorithms are greatly restrained. In this paper, preference rank immune memory clone selection algorithm (PISA) is proposed to solve the problem of multi-objective optimization with a large number of objectives. The nondominated antibodies are proportionally cloned by their preference ranks, which are defined by their preference information. It is beneficial to increase selection pressure and speed up convergence to the true Pareto-optimal front. Solutions used to approximate the Pareto front can be reduced by preference information. Because only nondominated antibodies are selected to operate, the time complexity of the algorithm can be reduced. Besides, an immune memory population is kept to preserve the nondominated antibodies and ε dominance is employed to maintain the diversity of the immune memory population. Tested in several multi-objective problems with 2 objectives and DTLZ2 and DTLZ3 as high as 8 objectives, PISA is experimentally effective.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利