主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
潘琪,罗笑南,朱继武.基于学习的局部几何相似性的医学图像放大.软件学报,2009,20(5):1146-1155
基于学习的局部几何相似性的医学图像放大
Learning-Based Medical Image Magnification Algorithm by Local Geometric Similarity
投稿时间:2008-09-24  修订日期:2008-12-15
DOI:
中文关键词:  图像放大  几何相似性  边缘保护  任意倍放大  非局部平均
英文关键词:image magnification  local geometric similarity  arbitrary factor  non-local means
基金项目:Supported by the National Natural Science Foundation of China under Grant Nos.60525213 (国家自然科学基金); the National Science Fund for Distinguished Young Scholars of China under Grant No.U0735001 (国家杰出青年科学基金-广东联合基金); the National Basic Research Program of China under Grant No.2006CB303106 (国家重点基础研究发展计划(973)); the Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China under Grant No.706045 (国家教育部科技创新工程重大项目); the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20060558078 (国家教育部博士点基金)
作者单位
潘琪 中山大学 信息科学与技术学院,广东 广州 510275
教育部数字家庭重点实验室(中山大学),广东 广州 510275 
罗笑南 中山大学 信息科学与技术学院,广东 广州 510275
教育部数字家庭重点实验室(中山大学),广东 广州 510275 
朱继武 广东药学院 医药商学院,广东 广州 510006 
摘要点击次数: 6227
全文下载次数: 4658
中文摘要:
      图像放大技术是医学图像处理中的重要领域.医学图像细节丰富处经常呈现出明显的几何结构特征或模式,如边缘.提出了一种基于学习的方法,将低分辨率图像块作为可用的邻域像素并提取其几何特征信息组成训练集,与高分辨率图像块之间建立局部对应关系,这种对应关系即为局部几何相似性.将训练集信息有效传递至待重建高分辨率图像块,图像放大的问题转化为重建系数的最优化问题,并且基于非局部平均思想,将其进而转化为加权最小二乘问题得到正则化解.实验结果表明,本方法不仅可以进行任意倍图像放大,且它可以摆脱一般方法对训练集合的依赖,具有较好的独立性,自适应性和边缘保持特性.
英文摘要:
      Image magnification is an important technology in medical image processing. High detail areas in medical images most often have a definite geometric structure or pattern, such as in the case of edges. This paper proposes a learning-based method. Geometric features extracted from the available neighboring pixels in the Low-resolution (LR) image form the training set. Assuming the training set is locally corresponding to geometric features from the High-resolution (HR) image patch to be reconstructed. Local geometric similarity is described as the correspondence. The task of image magnification is formulated as an optimization problem, where the optimization coefficients can adaptively tune its value to effectively propagating the features from the training set to the target HR image patch. The advantages are the ability to produce a magnified image by any factor, and not require any outlier supporters. A Weighted Least Square (WLS) method is provided to offer a convenient way of finding the regularized optimal solution, where the weight function is determined by the non-local means. Simulation and comparison results show that the proposed method is independent, adaptive and can produce sharp edges with rare ringing or jaggy artifacts.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利