主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
郑有志,覃征.基于二维经验模态分解的医学图像融合算法.软件学报,2009,20(5):1096-1105
基于二维经验模态分解的医学图像融合算法
Medical Image Fusion Algorithm Based on Bidimensional Empirical Mode Decomposition
投稿时间:2008-08-30  修订日期:2008-12-15
DOI:
中文关键词:  图像融合  二维经验模态分解(BEMD)  Hilbert-Huang变换  区域融合规则  区域分割
英文关键词:image fusion  bidimensional empirical mode decomposition (BEMD)  Hilbert-Huang transform  region-based fusion rule  region segmentation
基金项目:Supported by the National Natural Science Foundation of China under Grant No.60673024 (国家自然科学基金); the National Basic Research Program of China under Grant No.2004CB719401 (国家重点基础研究发展计划(973))
作者单位
郑有志 清华大学 计算机科学与技术系,北京 100084 
覃征 清华大学 计算机科学与技术系,北京 100084
清华大学 软件学院,北京 100084 
摘要点击次数: 5980
全文下载次数: 5930
中文摘要:
      提出了一种自适应的二维经验模态分解(bidimensional empirical mode decomposition,简称BEMD)医学图像融合算法.待融合的医学图像经过BEMD分解成二维的内蕴模函数(bidimensional intrinsic mode function,简称BIMF)和趋势图像.BIMF图像经过Hilbert-Huang变换提取图像特征,然后,图像分解的各部分数据在区域融合规则下形成综合BEMD表示.最后,综合BEMD表示进行BEMD逆变换得到融合后的医学图像.BEMD分解方法是一种完全自适应的数据分解表达形式,具有比Fourier变化和小波分解更好的特性.该医学图像融合算法不需要预先定义滤波器或小波函数.实验结果表明,该算法与传统融合算法相比性能优越,能够大幅度提高融合图像的质量.
英文摘要:
      An adaptive medical image fusion algorithm based on the representation of bidimensional empirical mode decomposition (BEMD) is proposed. Source medical images are decomposed into a number of bidimensional intrinsic mode functions (BIMF) as well as a residual image. Image features are extracted through Hilbert-Huang transform on the BIMF. Then the composite BEMD is formed by region-based fusion rules on data representations of BEMD. Finally, the fused image is obtained by inverse BEMD on the composite representation. The BEMD is an adaptive data decomposition representation, and has better performance than Fourier and wavelet transform. The proposed algorithm does not need predetermined filters or wavelet functions. Experimental results show that the proposed algorithm provides superior performance over conventional fusion algorithms in improving the quality of fused images.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利