主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
陈锦秀,姬东鸿.基于图的半监督关系抽取.软件学报,2008,19(11):2843-2852
基于图的半监督关系抽取
Graph-Based Semi-Supervised Relation Extraction
投稿时间:2008-02-29  修订日期:2008-08-26
DOI:
中文关键词:  关系抽取  基于图  半监督学习  标签传递
英文关键词:relation extraction  graph-based  semi-supervised learning  label propagation
基金项目:Supported by the National Natural Science Foundation of China under Grant Nos.60803078, 60773011 (国家自然科学基金)
作者单位
陈锦秀 厦门大学 智能科学与技术系,福建 厦门 361005 
姬东鸿 武汉大学计算机系,湖北 武汉 430072 
摘要点击次数: 6393
全文下载次数: 8671
中文摘要:
      提出利用基于图的半监督学习算法,即标注传递算法,指导计算机从非结构化的文本中自动识别出实体之间的关系.该方法首先利用图策略来建立关系抽取的模型.在这个图模型中,各个有标签和未标签的样本被表示成图上的各个节点,而样本间的距离则作为图上各边的权重.然后,关系抽取的任务就转化成在这个图上估计出一个满足全局一致性假设的标注函数.通过对ACE(automatic content extraction)语料库的评测,结果显示,当只有少量的标签样本时,采用该标注传递的方法可以获得比基于SVM(support vector machine)的有监督关系抽取更好的性能,同时也明显优于基于Bootstrapping的半监督关系抽取的方法.
英文摘要:
      This paper investigates a graph-based semi-supervised learning algorithm, that is, label propagation algorithm for relation extraction. Labeled and unlabeled examples are represented as the nodes, and their distances as the weights of edges in the graph. The relation extraction tries to obtain a labeling function on this graph to satisfy the global consistency assumption. Experimental results on the ACE (automatic content extraction) corpus showed that this method achieves a better performance than SVM (support vector machine) when only very few labeled examples are available, and it also performs better than bootstrapping for the relation extraction task.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利