主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
彭 岩,张道强.半监督典型相关分析算法.软件学报,2008,19(11):2822-2832
半监督典型相关分析算法
Semi-Supervised Canonical Correlation Analysis Algorithm
投稿时间:2008-03-01  修订日期:2008-08-26
DOI:
中文关键词:  典型相关分析  半监督学习  成对约束  降维  分类
英文关键词:canonical correlation analysis  semi-supervised learning  pair-wise constraints  dimensionality reduction  classification
基金项目:Supported by the National Natural Science Foundation of China under Grant Nos.60505004, 60875030 (国家自然科学基金); the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2006521 (江苏省自然科学基金)
作者单位
彭 岩 南京航空航天大学 计算机科学与工程系,江苏 南京 210016 
张道强 南京航空航天大学 计算机科学与工程系,江苏 南京 210016 
摘要点击次数: 8443
全文下载次数: 11086
中文摘要:
      在典型相关分析算法(canonical correlation analysis,简称CCA)的基础上,通过引入以成对约束形式给出的监督信息,提出了一种半监督的典型相关分析算法(Semi-CCA).在此算法中,除了考虑大量的标号样本以外,还考虑成对约束信息,即已知两样本属于同一类(正约束)或不属于同一类(负约束),同时验证了两者的相对重要性.在人工数据集、多特征手写体数据集和人脸数据集(Yale 和AR)上的实验结果表明,Semi-CCA能够有效地利用少量的监督信息来提高分类性能.
英文摘要:
      In this paper, a semi-supervised canonical correlation analysis algorithm called Semi-CCA is developed, which uses supervision information in the form of pair-wise constraints in canonical correlation analysis (CCA). In this setting, besides abundant unlabeled data examples, the domain knowledge in the form of pair-wise constraints which specify whether a pair of data examples belongs to the same class (must-link constraints) or not (cannot-link constraints) is also available. Meanwhile, the relative importance of must-link constraints and cannot-link constraints is validated. Experimental results on the artificial dataset, multiple feature database and facial database including Yale and AR show that the proposed Semi-CCA can effectively enhance the classifier performance by using only a small amount of supervision information.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利