主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
文贵华,江丽君,文 军.邻域参数动态变化的局部线性嵌入.软件学报,2008,19(7):1666-1673
邻域参数动态变化的局部线性嵌入
Dynamically Determining Neighborhood Parameter for Locally Linear Embedding
投稿时间:2006-11-03  修订日期:2007-01-24
DOI:
中文关键词:  流形学习  Hessian局部线性嵌入  邻域大小  降维
英文关键词:manifold learning  Hessian locally linear embedding  neighborhood size  dimensionality reduction
基金项目:Supported by the 2008 Project of Scientific Research Foundation for the Returned Overseas Chinese Scholars (2008年教育部留学回国人员科研启动基金); the Science-Technology Project of Guangdong Province of China under Grant No.2007B030803006 (广东省科技攻关项目); the Science-Technology Project of Hubei Province of China under Grant No.2005AA101C17 (湖北省科技攻关项目)
作者单位
文贵华 华南理工大学 计算机科学与工程学院,广东 广州 510641 
江丽君 华南理工大学 电子材料科学与工程系,广东 广州 510641 
文 军 湖北民族学院 理学院,湖北 恩施 445000 
摘要点击次数: 4001
全文下载次数: 4080
中文摘要:
      局部线性嵌入是最有竞争力的非线性降维方法,有较强的表达能力和计算优势.但它们都采用全局一致的邻域大小,只适用于均匀分布的流形,无法处理现实中大量存在的非均匀分布流形.为此,提出一种邻域大小动态确定的新局部线性嵌入方法.它采用Hessian局部线性嵌入的概念框架,但用每个点的局部邻域估计此邻域内任意点之间的近似测地距离,然后根据近似测地距离与欧氏距离之间的关系动态确定该点的邻域大小,并以此邻域大小构造新的局部邻域.算法几何意义清晰,在观察数据稀疏和数据带噪音等情况下,都比现有算法有更强的鲁棒性.标准数据集上的实验结果验证了所提方法的有效性.
英文摘要:
      Locally linear embedding is a kind of very competitive nonlinear dimensionality reduction with good representational capacity for a broader range of manifolds and high computational efficiency. However, they are based on the assumption that the whole data manifolds are evenly distributed so that they determine the neighborhood for all points with the same neighborhood size. Accordingly, they fail to nicely deal with most real problems that are unevenly distributed. This paper presents a new approach that takes the general conceptual framework of Hessian locally linear embedding so as to guarantee its correctness in the setting of local isometry to an open connected subset but dynamically determines the local neighborhood size for each point. This approach estimates the approximate geodesic distance between any two points by the shortest path in the local neighborhood graph, and then determines the neighborhood size for each point by using the relationship between its local estimated geodesic distance matrix and local Euclidean distance matrix. This approach has clear geometry intuition as well as the better performance and stability to deal with the sparsely sampled or noise contaminated data sets that are often unevenly distributed. The conducted experiments on benchmark data sets validate the proposed approach.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利