主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第8期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
李洋,方滨兴,郭莉,陈友.基于直推式方法的网络异常检测方法.软件学报,2007,18(10):2595-2604
基于直推式方法的网络异常检测方法
A Network Anomaly Detection Method Based on Transduction Scheme
投稿时间:2006-10-10  修订日期:2007-01-23
DOI:
中文关键词:  网络安全  异常检测  奇异值  直推式信度机  TCM-KNN算法
英文关键词:network security  anomaly detection  strangeness  TCM (transductive confidence machines)  TCM-KNN (transductive confidence machines for K-nearest neighbors) algorithm
基金项目:Supported by the National Natural Science Foundation of China under Grant No.60573134 (国家自然科学基金); the National Information Security 242 Project of China under Grant No.2005C39 (国家242信息安全计划项目)
作者单位
李洋 中国科学院,计算技术研究所,北京,100080
中国科学院,研究生院,北京,100049 
方滨兴 中国科学院,计算技术研究所,北京,100080 
郭莉 中国科学院,计算技术研究所,北京,100080 
陈友 中国科学院,计算技术研究所,北京,100080
中国科学院,研究生院,北京,100049 
摘要点击次数: 3718
全文下载次数: 4033
中文摘要:
      网络异常检测技术是入侵检测领域研究的热点和难点内容,目前仍然存在着误报率较高、对建立检测模型的数据要求过高、在复杂的网络环境中由于"噪音"的影响而导致检测率不高等问题.基于改进的TCM-KNN(transductive confidence machines for K-nearest neighbors)置信度机器学习算法,提出了一种网络异常检测的新方法,能够在高置信度的情况下,使用训练的正常样本有效地对异常进行检测.通过大量基于著名的KDD Cup 1999数据集的实验,表明其相对于传统的异常检测方法在保证较高检测率的前提下,有效地降低了误报率.另外,在训练集有少量"噪音"数据干扰的情况下,其仍能保证较高的检测性能;并且在采用"小样本"训练集以及为了避免"维灾难"而进行特征选取等优化处理后,其性能没有明显的削减.
英文摘要:
      Network anomaly detection has been an active and difficult research topic in the field of intrusion detection for many years. Up to now,high false alarm rate,requirement of high quality data for modeling the normal patterns and the deterioration of detection rate because of some "noisy" data in the training set still make it not perform as well as expected in practice. This paper presents a novel network anomaly detection method based on improved TCM-KNN (transductive confidence machines for K-nearest neighbors) machine learning algorithm,which can effectively detect anomalies using normal data for training. A series of experiments on well known KDD Cup 1999 dataset demonstrate that it has lower false positive rate,especially higher confidence under the condition of ensuring high detection rate than the traditional anomaly detection methods. In addition,even provided with training dataset contaminated by "noisy" data,the proposed method still holds good detection performance. Furthermore,it can be optimized without obvious loss of detection performance by adopting small dataset for training and employing feature selection aiming at avoiding the "curse of dimensionality".
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利