主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
张诚成,胡金春.基于支持向量聚类的多聚焦图像融合算法.软件学报,2007,18(10):2445-2457
基于支持向量聚类的多聚焦图像融合算法
Exploiting SVC Algorithm for Multifocus Image Fusion
投稿时间:2006-03-23  修订日期:2006-03-23
DOI:
中文关键词:  支持向量聚类  支持向量机  图像融合  多分辨率分析  融合规则
英文关键词:support vector clustering  support vector machine  image fusion  multiresolution analysis  fusion rule
基金项目:Supported by the National Natural Science Foundation of China under Grant No.10577012 (国家自然科学基金)
作者单位
张诚成 清华大学,计算机科学与技术系,北京,100084
清华大学,智能技术与系统国家重点实验室,北京,100084
清华信息科学与技术国家实验室,北京,100084 
胡金春 清华大学,计算机科学与技术系,北京,100084
清华大学,智能技术与系统国家重点实验室,北京,100084
清华信息科学与技术国家实验室,北京,100084 
摘要点击次数: 2929
全文下载次数: 2903
中文摘要:
      从无监督机器学习角度提出了一种基于SVC(support vector clustering)的图像融合规则,解决了基于SVM(support vector machine)的融合规则在处理多聚焦图像融合问题时所引起的区域混叠与非平滑过渡问题,进一步提高了融合图像的质量.使用非降采样离散小波变换对源图像进行多分辨率分解,基于网格提取源图像的特征.图像特征集合作为SVC的输入数据集,聚类结果最终由区域鉴别算法分配到两个区域:互补信息区域和冗余信息区域,并分别采用选择法和加权平均法生成融合图像的多分辨率表示,通过对这一多分辨率表示进行小波逆变换重构融合图像.详细研究了SVC的参数q与融合效果的评价参数RMSE之间的关系.理论分析及实验结果均表明,SVC用于图像融合问题是合适的,而且比较实验显示,基于SVC的融合规则优于基于SVM的融合规则.
英文摘要:
      This paper proposes a SVC (support vector clustering) based fusion rule according to unsupervised learning strategy. By employing the rule in multifocus image fusion applications,it solves the problems of region overlapping and abrupt transition brought about by the SVM (support vector machine) based fusion rule. The quality of the fused image is further enhanced. The undecimated discrete wavelet transform is applied to source images for multiresolution decomposition. Image feature data is extracted by means of grid,and it is then fed into the SVC algorithm which will generate distinct clusters. These resultant clusters are further processed by the domain discrimination algorithm and eventually distributed to two separate domains defined as complementary domain and redundant domain,in which choose-max method and weighted average method are used respectively to produce multiresolution representation of the fused image. Finally,the fused image is reconstructed by performing the corresponding inverse wavelet transform. The relation between the parameter q of SVC algorithm and the parameter RMSE used to evaluate the fused image is studied in detail. It is indicated by theoretical analysis and experimental results that SVC is appropriate for image fusion. Moreover,comparative studies show that the proposed SVC based fusion rule outperforms the existing SVM based ones.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利