主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2019-2020年专刊出版计划 微信服务介绍 最新一期:2019年第2期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
邵文泽,韦志辉.基于广义Huber-MRF图像建模的超分辨率复原算法.软件学报,2007,18(10):2434-2444
基于广义Huber-MRF图像建模的超分辨率复原算法
Super-Resolution Reconstruction Based on Generalized Huber-MRF Image Modeling
投稿时间:2005-07-17  修订日期:2006-06-30
DOI:
中文关键词:  超分辨率复原  Huber-MRF模型  双边滤波  偏微分方程  脉冲噪声
英文关键词:super-resolution  Huber-MRF model  bilateral filtering  partial differential equation (PDE)  impulse noise
基金项目:Supported by the Key Science-Technology Project of Trigonal Yangtse River of China under Grant No.BE2004400 (长三角联合攻关重大科技项目); the National Natural Science Foundation of China under Grant No.60672074 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2007AA12E100 (国家高技术研究发展计划(863)); the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.M200606018 (国家教育部博士点基金); the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2006569 (江苏省自然科学基金); the Science- Technology Creation Plan for Graduate Students of Jiangsu Province of China (江苏省高校研究生科技创新计划)
作者单位
邵文泽 南京理工大学,计算机科学与技术学院,江苏,南京,210094 
韦志辉 南京理工大学,计算机科学与技术学院,江苏,南京,210094 
摘要点击次数: 3551
全文下载次数: 3733
中文摘要:
      超分辨率图像复原是当今一个重要的热门研究课题.鉴于双边滤波优良的噪声抑制性和鲁棒的边缘保持性,提出一种双边滤波导出的广义MRF(Markov random field)图像先验模型.广义MRF模型不仅继承了双边滤波在阶数大邻域中的双重异性加权机制,且简洁地建立了双边滤波与Bayesian MAP(maximum a posterior)方法之间的理论联系.同时,由广义MRF模型导出了一种各向异性扩散PDE(partial differential equation)的改进数值解法.随后,在MRF-MAP框架下分别考虑高斯噪声和脉冲噪声两种情形,提出一种基于广义Huber-MRF模型的超分辨率复原算法,理论上保证具有严格全局最优解,并且利用半二次正则化思想和最速下降法求解相应的最小能量泛函.不论是视觉效果方面,还是峰值信噪比(PSNR)方面,实验结果都验证了广义Huber-MRF模型在超分辨图像复原中具有更强的噪声抑制性和边缘保持能力.
英文摘要:
      Super-Resolution (SR) reconstruction has been a very hot research topic currently. A kind of generalized MRF (GMRF,generalized Markov random field) models is firstly proposed based on the recently reported bilateral filtering. The GMRF model is not only edge-preserving and robust to noise,inherited directly from the bilateral filtering,but also connects the bilateral filtering with the Bayesian MAP (maximum a posterior) approaches much concisely. Meanwhile,an improved numerical scheme of anisotropic diffusion PDE’s (partial differential equation) is deduced based on the GMRF model. In the MRF-MAP framework,a new SR restoration algorithm is subsequently proposed for both cases of Gaussian noise and impulse noise,utilizing the generalized Huber-MRF model which guarantees strictly global convergence. The half-quadratic regularization approach and steepest descent are exploited to solve the energy functional. Experimental results demonstrate the effectiveness of this approach,both in the visual effect and the PSNR value.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利