主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
李红松,黄厚宽.无须附加空间的数据立方体联机聚集.软件学报,2006,17(4):806-813
无须附加空间的数据立方体联机聚集
Online Aggregation on Data Cubes Without Auxiliary Information
投稿时间:2005-03-30  修订日期:2005-10-10
DOI:
中文关键词:  数据立方体  联机分析处理  近似查询处理  联机聚集
英文关键词:data cube  OLAP (on-line analytical processing)  query approximation  online aggregation
基金项目:Supported by the Key Technology R&D Programe Foundation of China under Grant No.2002BA407B01-2 (国家科技攻关计划); the Special Science Foundation of Beijing Jiaotong University of China under Grant No.2003SZ003 (北京交通大学科技专项基金)
作者单位
李红松 北京交通大学,计算机与信息技术学院,北京,100044 
黄厚宽 北京交通大学,计算机与信息技术学院,北京,100044 
摘要点击次数: 2994
全文下载次数: 2715
中文摘要:
      以往在数据立方体上实现的联机聚集往往需要附加空间来存储联机聚集估算所需要的信息,极大地影响了数据立方体的存储和维护性能.提出了基于QC-Tree的用于范围查询处理的联机聚集PE(progressively estimate)算法以及它与简单聚集算法相结合的混合聚集算法HPE(hybrid progressively estimate);还提出了一种能够同时处理多个范围查询的联机聚集算法MPE(multiple progressively estimate).与以往联机聚集算法不同,这些算法不需要任何附加空间,而是利用QC-Tree自身保存的聚集数据和语义关系来估算聚集结果.由于QC-Tree是一种极为高效的数据立方体存储结构,因此能够以较理想的性能实现数据立方体上的联机聚集.对算法的分析和实验结果表明,所提出的算法具有较好的性能.
英文摘要:
      Typically, online aggregation algorithms on multi-dimensional data need additional auxiliary data for estimation, which make the performance of the storage and maintenance of the data cube worse. This paper presents the PE (progressively estimate) and HPE (hybrid progressively estimate) to progressively estimate the answers for range queries in the QC-Trees. MPE (multiple progressively estimate) is also proposed to simultaneously evaluate batches of range-sum queries. The difference between the algorithms and other online aggregation algorithms on data cubes is that these algorithms do not need any auxiliary information. The idea of this estimation method is to utilize the data stored in the QC-Tree itself. As a result, this algorithm will not deteriorate the performance of the storage and maintenance of the data cubes. Analysis and experimental results show that the algorithms provide an accurate estimation in far less time than the normal algorithms.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利