主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第8期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
商琳,王金根,姚望舒,陈世福.一种基于多进化神经网络的分类方法.软件学报,2005,16(9):1577-1583
一种基于多进化神经网络的分类方法
A Classification Approach Based on Evolutionary Neural Networks
投稿时间:2004-08-12  修订日期:2005-02-04
DOI:
中文关键词:  进化计算  进化策略  神经网络  分类
英文关键词:evolutionary computation  evolutionary strategy  neural network  classification
基金项目:Supported by the National Natural Science Foundation of China under Grant No.60273033(国家自然科学基金);the NaturalScience Foundation of Jiangsu Province of China under Grant No.BK2004079(江苏省自然科学基金)
作者单位
商琳 南京大学,计算机软件新技术国家重点实验室,江苏,南京,210093 
王金根 解放军焰兵学院,安徽,合肥,230031 
姚望舒 南京大学,计算机软件新技术国家重点实验室,江苏,南京,210093 
陈世福 南京大学,计算机软件新技术国家重点实验室,江苏,南京,210093 
摘要点击次数: 3300
全文下载次数: 3554
中文摘要:
      分类问题是目前数据挖掘和机器学习领域的重要内容.提出了一种基于多进化神经网络的分类方法CABEN(classification approach based on evolutionary neural networks).利用改进的进化策略和Levenberg-Marquardt方法对多个三层前馈神经网络同时进行训练.训练好各个分类模型以后,将待识别数据分别输入,最后根据绝对多数投票法决定最终分类结果.实验结果表明,该方法可以较好地进行数据分类,而且与传统的神经网络方法以及贝叶斯方法和决策树方法相比,在
英文摘要:
      Classification is important in data mining and machine learning. In this paper, a classification approach based on evolutionary neural networks (CABEN) is presented, which establishes classifiers by a group of three-layer feed-forward neural networks. The neural networks are trained by an improving algorithm synthesizing modified Evolutionary Strategy and Levenberg-Marquardt optimization method. The class label of the identifying data can first be evaluated by each neural network, and the final classification result is obtained according to the absolute-majority-voting rule. Experimental results show that the algorithm CABEN is effective for the classification, and has the better performance in classification precision, stability and fault-tolerance comparing with the traditional neural network methods, Bayesian classifiers and decision trees, especially for the complex classification problems with many classes.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利