主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
柴秀娟,山世光,高文,陈熙霖.基于样例学习的面部特征自动标定算法.软件学报,2005,16(5):718-726
基于样例学习的面部特征自动标定算法
Example-Based Learning for Automatic Face Alignment
投稿时间:2004-04-09  修订日期:2004-06-11
DOI:
中文关键词:  人脸识别  面部特征标定  形状提取  基于样例学习  点分布模型
英文关键词:face recognition  face alignment  shape extracting  example-based learning  point distribution model
基金项目:Supported bythe National Natural Science Foundation of China under Grant No.60332010(国家自然科学基金);the"100 Talents Program"of the Chinese Academy of Sciences(中国科学院"百人计划");the Shanghai Municipal Sciences and Technology Committee uder Grant No.03DZ15013(上海市科委资助项目);the ISVISION Technologies Co.,Ltd(银晨智能识别科技有限公司资金资助)
作者单位
柴秀娟 哈尔滨工业大学,计算机学院,黑龙江,哈尔滨,150001 
山世光 哈尔滨工业大学,计算机学院,黑龙江,哈尔滨,150001 
高文 哈尔滨工业大学,计算机学院,黑龙江,哈尔滨,150001
中国科学院,计算技术研究所ICT-ISVISION面像识别联合实验室,北京,100080 
陈熙霖 哈尔滨工业大学,计算机学院,黑龙江,哈尔滨,150001
中国科学院,计算技术研究所ICT-ISVISION面像识别联合实验室,北京,100080 
摘要点击次数: 3136
全文下载次数: 2941
中文摘要:
      面部特征标定是人脸识别中的一个关键问题.提出了一种基于样例学习的面部特征自动标定(人脸形状自动提取)方法.该方法是基于下面假设提出来的:人脸图像差和形状差之间存在一种近似的线性关系--相似的人脸图像在较大程度上蕴涵着相似的形状.因此,给定标注了特征点的人脸图像学习集,则任意新的输入人脸图像的面部形状可以采用如下方法估计:测量该人脸图像和训练集中图像的相似度,并将同样的相似度用于该人脸图像形状的重建.即:如果输入人脸图像可以表示为训练图像的优化的线性组合,那么同样的线性组合系数就可以直接用于训练集对应形状的线性组合从而得到输入人脸图像的形状.实验表明,该算法相对于其他传统的特征标定算法具有可比的精度和较快的速度.并且,还将此算法扩展到了多姿态情况下,实现了多姿态人脸图像形状的自动提取.
英文摘要:
      In this paper, a novel example-based automatic face alignment strategy has been proposed for facial features alignment, i.e. facial shape extracting. The method is motivated by an intuitive and experimental observation that there exists an approximate linearity relationship between the image intensity difference and the shape difference, that is, similar face image intensity distribution implies similar face shape. Therefore, given a learning set of face images with their corresponding face landmarks labeled, the shape of any other face image can be learned by estimating its similarities to the training images in the learning set and applying these similarities to the shape reconstruction of the unknown face image. Concretely, if the unknown face image is expressed by an optimal linear combination of the training images, the same linear combination coefficients can be directly applied to the linear combination of the corresponding training shapes to construct the optimal shape for the novel face image. Experiments have shown that, compared with traditional methods, the proposed method can achieve a comparable alignment accuracy in less time. Furthermore, the same strategy has been extended to extract the shape of face images with varying poses.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利