主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第4期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
王俊峰,杨建华,周虹霞,谢高岗,周明天.网络测量中自适应数据采集方法.软件学报,2004,15(8):1227-1236
网络测量中自适应数据采集方法
Adaptive Sampling Methodology in Network Measurements
投稿时间:2003-04-21  修订日期:2003-06-20
DOI:
中文关键词:  自适应抽样  分段线性拟合  网络测量
英文关键词:adaptive sampling  piecewise linear fitting  network measurement
基金项目:Supported by the National High-Tech Research and Development Plan of China under Grant No.2002AA121032 (国家高技术研究发展计划(863)); the Institute of Computing Technology Youth Fund under Grant No.20026180-14 (计算技术研究所青年基金)
作者单位
王俊峰 电子科技大学,计算机科学与工程学院,四川,成都,610054
中国科学院,软件研究所,北京,100080 
杨建华 中国科学院,计算技术研究所,信息网络研究室,北京,100080 
周虹霞 电子科技大学,电子工程学院,四川,成都,610054 
谢高岗 中国科学院,计算技术研究所,信息网络研究室,北京,100080 
周明天 电子科技大学,计算机科学与工程学院,四川,成都,610054 
摘要点击次数: 2986
全文下载次数: 3068
中文摘要:
      抽样方法广泛地应用于网络测量与其他领域对被测总体的指标进行估计.研究表明,多种网络指标呈现重尾分布或自相似的特征.这些特性为准确估计总体指标带来了诸多困难.但同时,对被测网络指标进行建模也有着重要的应用.然而,建立精确网络模型是困难的.从时间序列拟合角度出发,提出了一种基于拟合的自适应抽样方法,对被测指标进行基于测量的建模.工作主要体现在: (1) 采用分段线性函数对被测指标进行逼近,建立基于测量的模型; (2) 与常用的抽样方法相比,在相同的样本数情况下,由拟合模型对指标进行的估计更准确、更稳定;通过对两个测量记录的分析表明,在与常用抽样方法保持相同的拟合误差时,自适应抽样方法明显地减少了所需采集的样本数量; (3) 与其他概率抽样方法相比,自适应抽样最终抽取的样本数更稳定、更可靠,并给出了最终样本数的概率分布.
英文摘要:
      Sampling methodologies are widely used in network measurements and other related fields. Most applications mainly focus on parent population statistical metrics estimation of interest. Recent researches reveal that many aspects of network characters present heavy-tailed distribution or self-similarity. These properties might cause a heavy passive effect on the estimation accuracy. In other circumstances, there exist demands on modeling the characteristics of a network in network operation. To develop an accurate model for network character is much difficult. From a broader view, these applications are treated as special cases of fitting problems of planar data set or time series in applied mathematics. In the paper, a Fitting-based adaptive sampling methodology (FASM) is developed for reconstructing the evolution of some network characteristics (model). The contributions of the paper include: (1) Adopting a Piecewise Linear Function Approximation scheme to provide a more accurate approximation of the true character. (2) The statistical metric derived from the FASM provides a much more stable and accurate estimation than other popular methodologies under the same sampling size. Experiments based on two measurement traces show that the FASM can dramatically reduce the number of samples while retaining the same approximating residual error as others. (3) The variance of sampling size is more stable than those of other probability sampling schemes.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利