主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
万华林,Morshed U. Chowdhury.基于支持向量机的图像语义分类.软件学报,2003,14(11):1891-1899
基于支持向量机的图像语义分类
Image Semantic Classification by Using SVM
投稿时间:2002-09-28  修订日期:2002-12-04
DOI:
中文关键词:  基于内容  图像特征描述子  颜色  纹理  边缘  分类  SVM
英文关键词:content-based  image feature descriptor  color  texture  edge  classification  SVM
基金项目:
作者单位
万华林 中国科学院,计算技术研究所 数字化技术研究室,北京,100080 
Morshed U. Chowdhury School of Information Technology, Deakin University- Melbourne Campus, Melbourne 3125, Australia 
摘要点击次数: 3961
全文下载次数: 3163
中文摘要:
      图像的低层可视特征与高层语义特征之间存在着一道鸿沟,人们不能直接理解由计算机自动生成的低层特征.另外,基于内容的图像分类和检索的性能极大地依赖于可视特征的提取和描述.出于这些考虑,提出了新的图像纹理、边缘描述子提取方法,并将它们表示为直方图.在此基础上,集成纹理、边缘和颜色直方图作为图像的特征向量,用支持向量机(SVM)实现图像的语义分类.实验结果表明,集成的图像特征表示在图像分类实验中取得了很好的效果,具有比其他特征表示(如Gabor纹理、颜色直方图)更好的性能.
英文摘要:
      There exists an enormous gap between low-level visual feature and high-level semantic information, and the accuracy of content-based image classification and retrieval depends greatly on the description of low-level visual features. Taking this into consideration, a novel texture and edge descriptor is proposed in this paper, which can be represented with a histogram. Furthermore, with the incorporation of the color, texture and edge histograms seamlessly, the images are grouped into semantic classes using a support vector machine (SVM). Experiment results show that the combination descriptor is more discriminative than other feature descriptors such as Gabor texture.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利