主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
方绍武,戴蓓倩,李霄寒.一种具有强分类能力的离散HMM训练算法.软件学报,2001,12(10):1540-1543
一种具有强分类能力的离散HMM训练算法
An Algorithm with Strong Classifying Ability for Discrete HMM Training
投稿时间:1999-12-28  修订日期:2000-05-18
DOI:
中文关键词:  离散HMM(hidden Markov models)  分类能力  特征图案  矢量量化  鲁棒性
英文关键词:discrete hidden Markov model  classifying ability  characteristic pattern  vector quantization  robustness
基金项目:国家自然科学基金资助项目(69872036)
作者单位
方绍武 中国科学技术大学电子科学与技术系,安徽合肥 230026 
戴蓓倩 中国科学技术大学电子科学与技术系,安徽合肥 230026 
李霄寒 中国科学技术大学电子科学与技术系,安徽合肥 230026 
摘要点击次数: 3023
全文下载次数: 2539
中文摘要:
      提出了一种具有强分类能力的离散HMM(hiddenMarkovmodels)训练算法.该算法利用矢量量化技术将来自不同话者的训练数据进行混合训练,以生成包含各个话者特征的话者特征图案.用该特征图案代替经典的离散HMM中的VQ码本,可以提高观察值符号序列的模式辨识能力,从而提高了离散HMM的分类能力.给出了该方法用于文本有关的话者识别的实验结果,表明该算法可提高系统的识别性能,并要降低HMM对训练集大小的依赖程度,且识别时计算量明显小于经典HMM训练算法,具有较大的实用价值.
英文摘要:
      A discrete-HMM training algorithm which has strong ability of pattern classification is presented in this paper. By VQ (vector quantization) technique, this algorithm trains data from all speakers in mixed mode to generate the speaker characteristic pattern, which includes features of all speakers. By substituting the VQ code\|book in conventional discrete-HMM with characteristic pattern, the ability of pattern classification for observation symbol sequence is enhanced, therefore the classifying ability of discrete-HMM is improved. The experimental results show that the algorithm can improve the system's recognition performance, and reduce the dependence extent of HMM on the scale of training set. Moreover, the calculation quantum of this algorithm in recognition stage is obviously less than that of conventional HMM training algorithm, therefore it has higher practical value.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利