主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第9期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
周志华,陈兆乾,陈世福.基于域理论的自适应谐振神经网络研究(英文).软件学报,2000,11(11):1451-1459
基于域理论的自适应谐振神经网络研究(英文)
Research of Field Theory Based Adaptive Resonance Neural Network
投稿时间:1999-02-06  修订日期:1997-07-07
DOI:
中文关键词:  神经网络  机器学习  规则抽取  自适应谐振理论  域理论  知识获取  在线学习  增量学习
英文关键词:neural networks  machine learning  rule extraction  adaptive resonance theory  field theory  knowledge acquisition  online learning  incremental learni
基金项目:Project is supported by the National Natural Science Foundation of China under Grant No.69875006(国家自然科学基金)and the Natural Science Foundation of Jiangsu Province,China under Grant No.BK99036 (江苏省自然科学基金).
作者单位
周志华 南京大学计算机软件新技术国家重点实验室,江苏 南京,210093 
陈兆乾 南京大学计算机软件新技术国家重点实验室,江苏 南京,210093 
陈世福 南京大学计算机软件新技术国家重点实验室,江苏 南京,210093 
摘要点击次数: 2821
全文下载次数: 3493
中文摘要:
      提出了一种基于域理论的自适应谐振神经网络算法 FTART,有机结合了自适应谐振理论和域理论的优势 ,以一种独特的方式解决了示例间冲突和分类区域的动态扩展 ,不仅不需要手工设置隐层神经元 ,可以还获得了较快的训练速度和较高的预测精度 .同时还提出了一种可以从训练好的 FTART网络中抽取可理解性好、精度高的符号规则的方法 ,即基于统计的产生测试法 .实验结果表明 ,用该方法抽取的符号规则可以较好地描述FTART的功能.
英文摘要:
      In this paper, a Field Theory based adaptive resonance neural network algorithm FTART, which combines the advantages of Adaptive Resonance Theory and Field Theory, is proposed. FTART employs a unique approach to solve the conflicts between instances and extend classification regions dynamically. So that it does not need user to manually configure hidden units, and achieves fast training speed and high predictive accuracy. Moreover, a method named Statistic based Producing and Testing, which has the ability of extracting comprehensive and accurate symbolic rules from trained FTART,is proposed.Experimental results show that the symbolic rules extracted via this method can commendably describe the function of FTART.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利