Studies on Generalized Implication Operation and Generalized Series Reasoning Operation

DOI：

 作者 单位 何华灿 西北工业大学计算机科学与工程系,西安,710072 刘永怀 西北工业大学计算机科学与工程系,西安,710072 魏宝刚 西北工业大学计算机科学与工程系,西安,710072 胡　麒 西北工业大学计算机科学与工程系,西安,710072 王　瑛 西安矿业学院地质系,西安,710054

泛“蕴含”运算是广泛存在于经验性思维、不确定性推理和各种多值逻辑系统具有普遍意义的逻辑运算之一.但常见蕴含算子往往凭主观经验给定,缺乏理论指导和使用的有效性分析,具有很大的随意性和盲目性.本文首先研究了“蕴含”运算的思想基础,认为“蕴含”运算是“串行推理”运算的逆运算.然后提出了“蕴含”公理,从代数系统角度给出了“蕴含”运算的定义,提出并证明了“蕴含”运算的表示定理,对常见的蕴含算子进行了有效性分析.最后研究了“蕴含”运算在“串行推理”运算中的运用.从而克服了已有的蕴含运算理论存在的不足.这样实际应用就可

Generalized “IMPLICATION” operation (IO) is one of the logical operations that widely exist in experienced thinking, uncertain reasoning, and all kinds of multi-valued logical systems and have general significance. But the applications often give the logical operators without theoretic guide and the analyses of their effectiveness. In addition, they are often given at will and blindly. The authors first study the thinking foundation of IO, hold that IO is the inverse operation of series reasoning operation, then put forward the IO axiom, give the definition of IO from the viewpoint of algebraic system, raise and prove the representation theorem of IO which guarantees that the operators generated by it belong to IO and all operators belonging to IO can be generated by it, compare and analyse the implication operators in common use, finally study the utilization of IO in series reasoning operation. Thus the faults that the existing theory about IO have been overcome, the applications can design the implication operators according to the IO axiom and the representation theorem of IO which provide the theoretic foundation for the designing of generalized implication operators and ensure the reasoning conclusions exact and believable.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 主办单位：中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4 编辑部电话：+86-10-62562563 E-mail: jos@iscas.ac.cn Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved 本刊全文数据库版权所有，未经许可，不得转载，本刊保留追究法律责任的权利