主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
张旗,石纯一.适应噪声环境的解释学习算法.软件学报,1996,7(6):339-344
适应噪声环境的解释学习算法
EXPLANATION-BASED LEARNING ALGORITHM FOR NOISY DATA ENVIRONMENT
  修订日期:1995-04-20
DOI:
中文关键词:  解释学习  噪声  模式识别  
英文关键词:Explanation based learning  noisy data  pattern recognition.
基金项目:
作者单位
张旗 清华大学计算机系,北京,100084 
石纯一 清华大学计算机系,北京,100084 
摘要点击次数: 2426
全文下载次数: 2704
中文摘要:
      在现实世界里,AI系统难免受到噪声的影响.系统有效工作与否取决于它对噪声的敏感性如何.解释学习EBL(explanation-basedlearning)也不例外.本文探讨了在例子受到噪声影响的情况下,解释学习的处理问题,提出了一个算法NR-EBL(noise-resistantEBL).与现有的解释学习方法不同,NR-EBL在训练例子含有噪声时仍然可以学习,以掌握实际的问题分布;和类似的工作不同,NR-EBL指出了正确识别概念对于噪声规律的依赖性,试图从训练例子集合发现和掌握噪声的规律.可以相信,在识别概念时,借助于对噪声规律的认识,NR-EBL可比EBL和类似工作有更高的识别率.NR-EBL是解释学习和统计模式识别思想的结合.它把现有的解释学习模型推广到例子含有噪声的情形,原来的EBL算法只是它的特例.
英文摘要:
      In the real world, Al systems arc constantly and adversely influenced bynoisy data. This is also true of EBL (explanation-based learning). This paper discusseshow to cope with noisy data in explanation - based learning and proposes a NR -EBL(noise resistant explanation - based learning) algorithm. Unlike existing algorithms,NR-EBI. can learn macro rules and find the problem distribution when there is noise intraining examples. Also unlike similar work, NR-EBI. reveals the dependency of classifying examples correctly upon the regularities of noise and attempts to detect noise regularities from a set of training examples. With the help of knowledge of noise regularities,NR -EBI. can have a higher rate of correct recognition than traditional algorithms and previous work. NR EBI. is the combination of explanation - based learning and statisticalpattern recognition. Traditional algorithms are only special cases of NR-EBL when thereis no noise in training examples.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利