主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第5期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
杨刚,刘金露,李锡荣,许洁萍.一种基于视觉特征组合构造的零样本学习方法.软件学报,2018,29(S2):16-29
一种基于视觉特征组合构造的零样本学习方法
Visual Feature Combination Approach for Zero-Shot Learning
投稿时间:2018-04-14  修订日期:2018-09-30
DOI:
中文关键词:  零样本学习  图像分类  非相似表示  数据预处理
英文关键词:zero-shot learning  image classification  dissimilarity representation  data preprocessing
基金项目:国家自然科学基金(61773385,61672523)
作者单位E-mail
杨刚 中国人民大学 信息学院, 北京 100872  
刘金露 中国人民大学 信息学院, 北京 100872  
李锡荣 中国人民大学 信息学院, 北京 100872
数据工程与知识工程重点实验室(中国人民大学), 北京 100872 
xirong@ruc.edu.cn 
许洁萍 中国人民大学 信息学院, 北京 100872  
摘要点击次数: 374
全文下载次数: 159
中文摘要:
      零样本学习是机器学习和图像识别领域重要的研究热点.零样本学习方法通常利用未见类与可见类之间的类别语义信息,将从可见类样本学习到的知识转移到未见类,实现对未见类样本的分类识别.提出了一种基于视觉特征组合构造的零样本学习方法,采用特征组合的方式构造产生大量未见类样例特征,将零样本学习问题转化为标准的监督学习分类问题.该方法模拟了人类的联想认知过程,其主要包括4步:特征-属性关系提取、样例构造、样例过滤、特征域适应.在可见类样本上抽取类别属性与特征维度的对应关系;利用特征-属性关系,通过视觉特征的组合构造的方式,产生未见类样例;引入非相似表示,过滤掉不合理的未见类样例;提出半监督特征域适应和无监督特征域适应,实现未见类样例的线性转换,产生更有效的未见类样例.在3个基准数据集(AwA,AwA2和SUN)上的实验结果显示,该方法效能优越,在数据集AwA上获得了当前最优的Top-1分类正确率82.6%.实验结果证明了该方法的有效性和先进性.
英文摘要:
      Zero-Shot learning is an important research in the field of machine learning and image recognition. Zero-Shot learning methods normally use the semantic information among unseen classes and seen classes to transfer the knowledge which is learned from examples of seen classes to unseen classes, so as to recognize and classify the examples of unseen classes. In this study, a zero-shot learning approach based on construction of visual feature combination is proposed. The approach generates many examples of unseen class on visual feature level by the way of feature combination, which is first proposed, and thus transforms zero-shot learning problem to be a traditional classification problem solved by supervised learning. The approach mimics human cognition process of associative memory, and includes four steps:feature-attribute relation extraction, example construction, example screening, and domain adaption. On training examples of seen classes, the relationship between class attributes and dimensions of feature is extracted; on visual feature level, examples of unseen classes are generated by visual feature combination; dissimilarity representation is introduced to filter the generated examples of unseen classes; semi-supervised and unsupervised feature domain adaption are proposed to linearly transform the generated examples of unseen classes to be more effective. The proposed approach shows superior performance on three benchmark datasets (AwA, AwA2, and SUN), especially on dataset AwA, it obtains 82.6% top-1 accuracy which is the best result as far as we know. Experiment results demonstrate the effectiveness and superiority of the proposed approach.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利