主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
张伟哲,张宏莉,张元竞.基于判例构造的并行作业性能预测.软件学报,2010,21(zk):238-250
基于判例构造的并行作业性能预测
Parallel Job Performance Prediction Based on the Case Reconstruction
投稿时间:2010-06-15  修订日期:2010-12-10
DOI:
中文关键词:  网络计算  并行作业  性能预测  判例程序  循环子串收缩
英文关键词:network computing  parallel job  performance prediction  case program  circular sub-string compressing
基金项目:Supported by the National Natural Science Foundation of China under Grant No.60703014 (国家自然科学基金); the National Basic Research Program of China under Grant No.G2011CB302605 (国家重点基础研究发展计划(973))
作者单位E-mail
张伟哲 哈尔滨工业大学 计算机科学与技术学院,黑龙江 哈尔滨 150001 wzzhang@hit.edu.cn 
张宏莉 哈尔滨工业大学 计算机科学与技术学院,黑龙江 哈尔滨 150001  
张元竞 哈尔滨工业大学 计算机科学与技术学院,黑龙江 哈尔滨 150001  
摘要点击次数: 2640
全文下载次数: 2899
中文摘要:
      针对基于MPI 的并行作业性能预测问题,鉴于历史预测与建模分析方法在异构网络计算环境中性能预测的局限,提出了基于判例构造的并行作业性能预测方法.在MPI 库PMPI 接口中插入封套函数,获取通信日志,并设计了日志规整和合并算法.将最核心的日志循环收缩问题,转化为字符串循环子串收缩问题,提出了一种基于后缀数组算法,在理论和实际的性能方面均优于已有算法;判例程序自动构建阶段,解决了计算时间与通信时间等比例缩放问题,设计了自动构建可执行判例程序的方法.同构与异构机群环境实验结果表明,判例预测方法能够比较准确地预估计算作业的运行时间,对于同构机群误差不超过3%,异构机群误差不超过10%,与同类算法相比,具有较好的综合性能.
英文摘要:
      Accurate prediction of the running time of parallel jobs under different computing resources is the foundation of many job scheduling approaches. A job performance prediction method based on the Performance Skeleton is proposed to avoid the inaccuracy of historical and modeling analysis prediction methods in heterogeneous clusters. To record the running trace, a method is designed to access all communication traces during the runtime. To merge these traces, this paper designs a trace-merge algorithm to structure the communication traces. To compress the circulatory traces, which is the most central and difficult, this paper converts it into a circular sub-string compressing problem, and proposes an algorithm based on the suffix array. Its performance is theoretically and practically better than the existing algorithms. To automatically reconstruct the Performance Skeleton, it solves the scalable problem of calculation and communication time. Experimental results show that these methods can accurately estimate the running time of computing jobs. The error is less than 3% for homogeneous clusters, and 10% for heterogeneous clusters.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利