主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
张少中,陈德人.面向个性化推荐的两层混合图模型.软件学报,2009,20(zk):123-130
面向个性化推荐的两层混合图模型
Hybrid Graph Model with Two Layers for Personalized Recommendation
投稿时间:2009-03-05  修订日期:2009-04-03
DOI:
中文关键词:  小世界网络  贝叶斯网络  个性化推荐  混合图模型
英文关键词:small world network  Bayesian network  personalized recommendation  hybrid graph model
基金项目:Supported by the National Natural Science Foundation of China under Grant No.70671007 (国家自然科学基金); the Postdoctoral Science Foundation of China under Grant No.20060390391 (中国博士后基金)
作者单位
张少中 浙江万里学院 电子信息学院,浙江 宁波 315100 
陈德人 浙江大学 软件学院,浙江 宁波 315100 
摘要点击次数: 4092
全文下载次数: 3955
中文摘要:
      小世界网络在聚类应用中具有良好的性质,贝叶斯网络在概率推理中也得到了广泛的研究.将小世界网络和贝叶斯网络结合起来,形成一种混合图模型,并将该模型用于个性化推荐系统中.该混合图模型由两层组成,分别是用户层和商品层.其中小世界网络用于描述用户层内用户-用户结点间的关系,贝叶斯网络用于描述商品层内商品-商品结点以及层间用户-商品结点间的偏好关系.对小世界网络的用户聚类方法、贝叶斯网络结构和参数学习方法以及两层图模型的推荐算法进行描述,实验分析表明,该模型能够很好地表示用户-用户、商品-商品以及用户-商品间的关系,推荐结果具有良好的准确度.
英文摘要:
      A hybrid graph model for personalized recommendation, which is based on small world network and Bayesian network, is presented. Small world network has a good property in clustering and Bayesian network is compatible for probability inference. The hybrid graph model consists of two layers. One is user’s layer for representing users or customers and the other is merchandise’s layer for representing goods or products. Small world network describes the relationships among the nodes of users in lower layer. The implications among nodes of merchandises are represented by Bayesian network in higher layer. Directed arcs denote the tendency of nodes between user’s layer and merchandise’s layer. This paper also introduces several algorithms for clustering based on small world network, structure learning and parameter learning of Bayesian network, and recommended algorithm based this model. The experimentation shows that the model be accomplished to represent the relationships from user to user, merchandise to merchandise, and user to merchandise. The experimental results show that the hybrid graph model has a good performance in personalized recommendation.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利