

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.20, No.9, September 2009, pp.2558−2573 http://www.jos.org.cn
doi: 10.3724/SP.J.1001.2009.00575 Tel/Fax: +86-10-62562563
© by Institute of Software, the Chinese Academy of Sciences. All rights reserved.

一种抵御拒绝服务攻击的自适应客户端难题
∗

陈瑞川 1,2, 郭文嘉 1,2, 唐礼勇 1,2+, 陈 钟 1,2

1(北京大学 信息科学技术学院 软件研究所,北京 100871)
2(高可信软件技术教育部重点实验室(北京大学),北京 100871)

Adaptive Client Puzzle Scheme Against Denial-of-Service Attacks

CHEN Rui-Chuan1,2, GUO Wen-Jia1,2, TANG Li-Yong1,2+, CHEN Zhong1,2

1(Institute of Software, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China)
2(Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing 100871, China)

+ Corresponding author: E-mail: tly@infosec.pku.edu.cn, http://infosec.pku.edu.cn/

Chen RC, Guo WJ, Tang LY, Chen Z. Adaptive client puzzle scheme against denial-of-service attacks.
Journal of Software, 2009,20(9):2558−2573. http://www.jos.org.cn/1000-9825/575.htm

Abstract: This paper studies the traditional client puzzle scheme and proposes an adaptive scheme which
performs a lightweight client-server interaction to flexibly adjust the puzzle difficulty according to the real-time
statuses of both client and server. To evaluate the applicability, the authors combine the two schemes and develop an
adaptive DoS-resistant security framework for Peer-to-Peer networks. The theoretical analyses and experimental
results show that the adaptive client puzzle scheme can effectively defend against various DoS attacks without
significantly influencing legitimate clients’ experiences even in a highly malicious environment.
Key words: denial-of-service attack; client puzzle; peer-to-peer network

摘 要: 研究传统的客户端难题方案,之后提出一种自适应客户端难题方案.该方案采用一种轻量级的协议交互

方式来获取客户端和服务器双方的实时状态信息,并据此自适应地调整客户端难题的难度.为了评估该方案的适用

性,结合传统和自适应两种客户端难题方案,在对等(P2P)网络中提出了一种抵御 DoS 攻击的自适应安全框架.理论

分析和实验结果表明,甚至在高度恶意的网络环境中,自适应客户端难题方案都可以在不明显影响合法客户端性能

的前提下有效地抵御各种 DoS 攻击.
关键词: 拒绝服务攻击;客户端难题;对等网络
中图法分类号: TP393 文献标识码: A

1 Introduction

Denial-of-Service (DoS) attacks aiming at exhausting a target host’s resources have become a major security
threat to the Internet. As a large number of incidents have illustrated, even a powerful host may be vulnerable to

∗ Supported by the National Natural Science Foundation of China under Grant No.60773163 (国家自然科学基金)

Received 2008-02-20; Accepted 2008-12-10

陈瑞川 等:一种抵御拒绝服务攻击的自适应客户端难题 2559

DoS attacks.
In general, on the Internet, a DoS attack is an attack in which one or more hosts attempt to thwart genuine

hosts from having access to legitimate services[1]. For instance, when a DoS attacker overloads a host through
initiating a large number of requests, the victim will consume its resources (e.g., memory space, computational
resources and network bandwidth) and deny its services to genuine hosts. In most cases, sufficient scale can be
achieved by compromising enough hosts and using those compromised hosts to perpetrate the attack. Such an attack
is known as a Distributed Denial-of-Service (DDoS) attack.

Currently, several countermeasures have been proposed. Among them, the client puzzle scheme is an intriguing
solution, and it is particularly well-suited for defending against DoS attacks[2]. Generally, in the scheme, a client has
to compute a moderately expensive but not intractable puzzle in order to gain access to the resources allocated by a
server. This prevents a DoS attacker from consuming a large portion of the target server’s resources without
investing considerable resources. Specifically, the computation cost for the client should be much higher than the
generation and verification costs for the server; moreover, the client’s computation cost, i.e., the puzzle difficulty,
should be effortlessly adjusted by the server.

In this paper, we first study the traditional client puzzle scheme[3], and then we propose a novel adaptive client
puzzle scheme which performs a lightweight client-server interaction to adjust the puzzle difficulty. Specifically,
our scheme takes not only server status but also client status and time factor into consideration. That is, our scheme
has the capacity of adaptively adjusting the puzzle difficulty based on the real-time statuses of both client and
server. To evaluate the applicability, we further combine the adaptive client puzzle scheme with the traditional
scheme, and develop an integrated DoS-resistant security framework for Peer-to-Peer (P2P) networks to defeat
various DoS attacks including IP spoofing attack, reflection attack, replay attack and pre-computation attack. Both
theoretical analyses and experimental results demonstrate that the adaptive client puzzle scheme can effectively
handle various DoS attacks without significantly influencing legitimate clients’ experiences even in a highly
malicious environment.

The rest of this paper is organized as follows. Section 2 gives an overview of related work. We describe the
environmental assumptions in Section 3. The traditional and the adaptive client puzzle schemes are elaborated in
Section 4. We then specify the details of the adaptive DoS-resistant security framework for P2P networks in Section
5. The simulation methodology and performance evaluation are presented in Section 6. Finally, we conclude and
describe the future work in Section 7.

2 Related Work

To the best of our knowledge, Merkle was the first to come up with the idea of client puzzles. However, he
only applied puzzles for key agreement rather than access control[4]. Then, Dwork and Naor presented client puzzles
as a general solution to regulate junk mails[5]. Afterwards, Juels and Brainard utilized client puzzles to handle TCP
SYN flooding[6], and Aura, et al. applied client puzzles to authentication protocols in general[3]. However, most of
the above schemes merely consider the server status, so they cannot reflect the network environment completely.
Recently, a novel client puzzle scheme, Portcullis[2], was proposed. In Portcullis, since a server gives priority to
requests containing puzzles with higher difficulty levels to gain access to the requested resources, each client—no
matter legitimate or malicious—has to compete with each other and solve difficult puzzles under attacks. This may
influence legitimate clients’ experiences significantly. Compared with the existing puzzle schemes, our adaptive
client puzzle scheme treats each client distinctively by performing a lightweight interaction to flexibly adjust the
puzzle difficulty according to the real-time statuses of network environment. In our scheme, each legitimate client

2560 Journal of Software 软件学报 Vol.20, No.9, September 2009

only needs to compute an easy puzzle, while a malicious client has to compute a very hard puzzle. This guarantees
that our adaptive client puzzle scheme does not influence legitimate clients’ experiences significantly, and it also
prevents a malicious client from attacking the server without investing considerable resources.

Besides the basic CPU-bound client puzzle, some other forms of client puzzles are actively studied, such as
memory-bound puzzle[7], time-lock puzzle[8], threshold puzzle[9] and puzzle auction[10].

3 Environmental Assumptions

For convenience, if host i requests the resources of host j in a transaction, we define host i and host j as client
and server respectively in this transaction. Then, we can make several environmental assumptions. Specifically, the
first two assumptions describe the properties of server and client respectively, and the other two specify the
capabilities of attackers.

• Each server has ample network bandwidth, and no attacker can saturate a server by simply issuing a
large number of messages. Whatever happens, the server is at least capable of rejecting the incoming
messages and sending reply;

• The legitimate clients seeking access to a heavily loaded server would like to perform a moderately
expensive computation;

• Attackers cannot modify, delay or drop the messages transmitted between any legitimate client and the
associated server. For instance, if attackers have the capacity of tampering with messages, they can
launch DoS attacks by simply corrupting these messages;

• Attackers can perform IP spoofing, moreover, they are able to eavesdrop or replay any message sent
between client and server.

In particular, the first environmental assumption seemingly limits the application field since many DoS attacks
are characterized by flooding a server with huge amounts of requests; however, we can defeat such DoS attacks by
coordinating multiple routers to check the attack flows before they converge to the server. A thorough investigation
of the router coordination is important, but it is beyond the scope of this paper.

4 Client Puzzle Schemes

In this section, we first describe a set of desirable properties that should be possessed by a good client puzzle.
Then, we study the traditional client puzzle scheme (abbr., TCPS), and propose a novel adaptive client puzzle
scheme (abbr., ACPS). Finally, we analytically compare the two schemes under various typical DoS attacks.

4.1 Puzzle poperties

As described in previous studies[3,6,11], regardless of the specific implementation, a good client puzzle should
have the following fundamental properties:

• Generating a puzzle and verifying the solution are inexpensive for the server, i.e., these operations must
avoid compromising the server’s resources;

• The puzzle difficulty can be effortlessly adjusted from zero to impossible;
• Having solved many other puzzles does not help the client solve new given puzzles;
• The puzzle must be time-dependent so that the client has only a limited time to solve the puzzle;
• The puzzle must be able to be verified in a stateless way, i.e., while the client is solving a puzzle, the

server does not need to store any session-specific data.

陈瑞川 等:一种抵御拒绝服务攻击的自适应客户端难题 2561

4.2 Traditional client puzzle scheme (TCPS)

4.2.1 Design rationale
To generate a traditional puzzle, the server periodically creates a short-term nonce NS to limit the time that

clients have for computing puzzle solutions. Specifically, the nonce should not be a predictable value and should
have at least 64 bits of entropy. This entropy guarantees that an attacker usually does not have enough resources to
create a database by pre-computing all the 〈nonce, result〉 pairs; furthermore, it ensures that the occasional matches
caused by birthday attacks are not very harmful. Besides, the server needs to determine the puzzle difficulty k based
on its current status (described in Section 4.2.2). Consequently, the puzzle broadcasted to clients is the 〈NS, k〉 pair.

To solve the puzzle, the client first generates a nonce NC, and then performs a brute-force search to find the
32-bit solution X of the following equation:

 ()(| | |) k
C S Ch IP N N X Y= (1)

where
• h: A cryptographic hash function, e.g., MD5 or SHA1;
• IPC: The client’s IP address;
• NS and NC: Two nonces generated by the server and the client, respectively;
• X and k: The solution and the difficulty of the puzzle;
• Y(k): A hash value with the first k bits being equal to 0.

Somewhat interestingly, the client can reuse the latest puzzle by generating a new NC. This is a favorable
characteristic to enhance the system performance.

To gain access to the server’s resources, the client should subsequently submit a message, including the client
nonce NC and the puzzle solution X, to the server. Then, the server needs to check the received message. As long as
the server accepts the solution, it must keep book of the correctly solved puzzle instance in the form of 〈IPC,NS,NC〉,
where the client’s IP address IPC can be extracted from the IP header of the received message. This booking
operation ensures that the solution cannot be replayed.
4.2.2 Adjusting the puzzle difficulty

When a server comes under attacks, it imposes the computational loads on the clients by distributing puzzles to
these clients. On one hand, puzzles cannot be so hard that legitimate clients will experience a harmful degradation
of services; on the other hand, puzzles cannot be too simple since attackers can rapidly solve the puzzles and
compromise the server’s resources. Generally, TCPS parameterizes the puzzle difficulty according to the server
status, i.e., the ratio of consumed resources to total resources possessed by the server. The more resources the server
consumes, the harder puzzles it will issue in the future. The actual generation of puzzle difficulty k is described as
follows:

 max

min ,consumed

total

Server Status

Rk k
R

β

α

⎧ ⎫
⎪ ⎪⎛ ⎞⎪ ⎪= ×⎨ ⎜ ⎟ ⎬

⎝ ⎠⎪ ⎪
⎪ ⎪⎩ ⎭

 (2)

where
• k: The puzzle difficulty;
• α and β: Two positive parameters to tune the puzzle difficulty k into an appropriate interval;
• Rconsumed and Rtotal: The consumed resources and the total resources possessed by the server, respectively;
• kmax: The difficulty of a puzzle which is impossible to be solved in a limited period of time.

2562 Journal of Software 软件学报 Vol.20, No.9, September 2009

4.2.3 Scheme analysis
TCPS satisfies all the fundamental properties of a good puzzle[3]. However, this scheme can only periodically

adjust the unified puzzle difficulty based on the server status, and it cannot distribute puzzles with different
difficulties to different clients according to the real-time statuses of both client and server.

In real-world networks, each host has its unique property, e.g., the properties of legitimate and malicious hosts
are completely different from each other. Therefore, we should independently tune each puzzle’s difficulty
appropriately to defeat the attacks and minimize the legitimate clients’ costs. In the next subsection, we propose an
adaptive client puzzle scheme that can flexibly adjust the puzzle difficulty.

4.3 Adaptive client puzzle scheme (ACPS)

4.3.1 Design rationale
Since we are interested in how messages are processed as well as what messages are sent, for the sake of

clarity and simplicity, we utilize the annotated Alice-and-Bob specification[12] to describe the ACPS. As shown in
Fig.1, the scheme performs a lightweight client-server interaction as follows:

Stage 1: If a client C wants to gain access to the server S’ resources, the client first generates a 64-bit nonce NC
as its session identifier SIC. Then, the client stores the session identifier locally, and sends it to the server.

Stage 2: On receiving the message consisting of SIC sent by the client C, the server S determines the puzzle
difficulty k based on the real-time statuses of both client and server (described in section 4.3.2). Subsequently, the
server generates its 64-bit session identifier SIS according to the client’s IP address IPC (extracted from the IP header
of the received message), the client’s session identifier SIC and the puzzle difficulty k. The detailed generation
process is specified as follows:
 (| |)S secret C CSI HMAC IP SI k= (3)

where
• SIS: The server’s session identifier;
• HMAC: A keyed hash function for message authentication[13];
• secret: A 32-bit key which is periodically changed and only known to the server itself;
• IPC and SIC: The IP address and the session identifier of the client;
• k: The puzzle difficulty.

Note that, since a single IP address may represent a number of actual clients (e.g., clients behind a NAT), we
should additionally take port number into consideration; however, for the sake of clarity, we omit the port number
related information in the description of ACPS.

Fig.1 Adaptive client puzzle scheme

After the above generation process, the server replies to the client at IPC with the client’s session identifier SIC,
the server’s session identifier SIS and the puzzle difficulty k. Once the client has received this reply message, it first
checks whether the received SIC is really generated by itself. If the received SIC is bogus, the client simply drops the
message; otherwise, the client stores the server’s session identifier SIS immediately. Such replies and checking

Stage 1 (C→S): generate SIC, store SIC ||SIC|| (null)
Stage 2 (S→C): generate k, generate SIS ||SIC,SIS,k|| check SIC, store SIS
Stage 3 (C→S): retrieve 〈SIC,SIS〉, solve puzzle ||SIC,SIS,k,solution,request|| check 〈SIC,SIS〉,

check SIS, check solution, store 〈SIC,SIS〉, process request
where

• SIC: The client’s session identifier;
• SIS: The server’s session identifier;
• k: The puzzle difficulty.

陈瑞川 等:一种抵御拒绝服务攻击的自适应客户端难题 2563

operations could enhance the robustness of ACPS under IP spoofing attacks and reflection attacks.
Stage 3: The client C retrieves the 〈SIC,SIS〉 pair as the global session identifier, and then it tries to solve the

puzzle according to the following equation by brute force:

 ()(| |) k
C Sh SI SI X Y= (4)

where
• h: A cryptographic hash function, e.g., MD5 or SHA1;
• SIC and SIS: Session identifiers of the client and the server, respectively;
• X and k: The solution and the difficulty of the puzzle;
• Y(k): A hash value with the first k bits being equal to 0.

After the brute-force computation, the client sends the server a message including the global session identifier
(i.e., the 〈SIC,SIS〉 pair), the puzzle difficulty, the puzzle solution and the actual request. Once the server has received
this message, it should perform the following operations in turn:

• Check whether the global session identifier 〈SIC,SIS〉 is really fresh based on the database of the past global
session identifiers;

• Check whether the server’s session identifier SIS can be correctly generated according to Eq.(3). Specifically,
this operation can additionally check whether the difficulty k reported by the client is the original k
determined by the server;

• Check whether the puzzle solution is correct according to Eq.(4);
• Store the global session identifier 〈SIC,SIS〉, and process the request submitted by the client.
Note that, in the sequence of operations, if one operation succeeds, the server continues to perform the next;

otherwise, the server cancels all the following operations, and the entire transaction ends.
4.3.2 Adjusting the puzzle difficulty

The characteristic part in ACPS is the method adaptively adjusting the puzzle difficulty based on the real-time
statuses of both client and server. Besides the server status which has already been involved in TCPS, we consider
two more factors: client status and time.

Client status: Firstly, most of the legitimate clients should merely perform a simple computation to access the
requested resources. Secondly, according to the second environmental assumption, some legitimate clients which
frequently gain access to the server’s resources (i.e., these legitimate clients have solved a relatively large number
of puzzles) should perform a moderately expensive computation. Thirdly, according to the first environmental
assumption, each server has sufficient network bandwidth, and the attackers cannot overwhelm a server simply by
flooding the server with a sheer volume of messages. That is, in order to launch a DoS attack effectively, the
attackers have no alternative but to solve a large number of puzzles and send these puzzle solutions to force the
server to perform lots of expensive operations. Therefore, the more puzzles a client has solved in the latest period of
time, the higher the probability that this activity is malicious and DoS-like, thus the harder puzzles the server issues
to the client in the future; whereas the pattern is reversed. Note that, since an attacker could simply spoof its IP
address, in order to effectively utilize the client status, our client puzzle scheme should have the capability of
defending against IP spoofing attacks, which we have described in Section 4.3.1, and will further analyze in Section
4.4.

Time: As described in the previous subsection, the server periodically changes its secret. We define the latest
secret change-point as Tstart, and the forthcoming secret change-point as Tend. In real-world networks, attackers can
acquire many puzzles from a server even a little after Tstart, and then they manage to solve these puzzles as many as
possible, finally at some time before Tend, the attackers submit all the puzzle solutions to overload the server. This is

2564 Journal of Software 软件学报 Vol.20, No.9, September 2009

a typical kind of pre-computation attacks. To counter such attacks, we distribute harder puzzles if the current time
point is closer to Tstart; otherwise, if the current time is closer to Tend, the pattern is reversed.

Combining the three factors, i.e., server status, client status and time, the difficulty of a puzzle which is
distributed to a specific client at the current time can be calculated from the following equation:

 max

1min ,
1

now consumed i end now
i

total total end start

Server Status Client Status Time

R N T Tk k
R N T T

β γ δ

α

⎧ ⎫
⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ −⎪ ⎪= × × ×⎨ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎬

+ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪
⎪ ⎪⎩ ⎭

 (5)

where
• Tnow: The current time point;

• now
ik : The difficulty of the puzzle which is distributed to client i at Tnow;

• α, β, γ and δ: Four positive parameters to weigh various factors, and to tune the puzzle difficulty into an
appropriate interval;

• Rconsumed and Rtotal: The consumed resources and the total resources possessed by the server;
• Tstart and Tend: The latest and the forthcoming secret change-points;
• Ni: The count of puzzles which have been solved by client i during the latest time period [Tnow−Tperiod, Tnow],

where Tperiod=Tend−Tstart;
• Ntotal: The total count of puzzles which have been solved by all the clients during the latest time period

[Tnow−Tperiod,Tnow];
• kmax: The difficulty of a puzzle which is impossible to be solved in a limited period of time.

In real-world networks, clients’ computation capabilities vary a lot, e.g., the time to solve a puzzle will be
much different between a client with multiple fast CPUs and a client with just one slow CPU. To decrease the
computational disparity, some other kinds of puzzles, such as memory-bound puzzle[7] and time-lock puzzle[8],
could be complementary to our scheme.
4.3.3 Scheme analysis

In ACPS, the server only needs to perform one arithmetic operation and one HMAC operation to generate a
new puzzle; furthermore, it can merely execute a one-way hash function to verify the puzzle solution in a constant
time. Therefore, ACPS satisfies the first fundamental property of a good puzzle.

To solve a puzzle, the client has no way to figure out the solution other than brute-force searching the solution
space until a solution is found. The cost of solving the puzzle depends exponentially on the puzzle difficulty k,
which can be effortlessly adjusted by the server. If k=0, no operation is required; if k=kmax, the client needs to
perform a brute-force search for kmax bits of the inverse of the hash function, which is computationally impossible in
a limited period of time. Moreover, due to the essential feature of hash function, the client cannot solve the puzzle
more efficiently with many other solved puzzles. Hence, the second and the third fundamental properties of a good
puzzle are also satisfied.

Since the server secret is periodically changed and the time factor plays an important role in determining the
puzzle difficulty, ACPS is time-dependent. Besides, in ACPS, the server stores the session-specific data and
processes the actual request only after it has verified the client’s solution to the puzzle. That is, the server does not
commit its resources until the client has demonstrated the sincerity. Consequently, ACPS satisfies the last two
fundamental properties.

To sum up, ACPS has satisfied all the fundamental properties of a good puzzle. Compared with TCPS, the
ACPS can distribute different puzzles to different clients by adaptively adjusting each puzzle’s difficulty based on

陈瑞川 等:一种抵御拒绝服务攻击的自适应客户端难题 2565

the real-time statuses of both client and server. This enhances the effectiveness of ACPS in the malicious
environment. Besides, ACPS needs to perform a lightweight client-server interaction to adjust the puzzle difficulty.
This interaction slightly reduces the system efficiency; however, it is worthwhile for the security enhancement it
brings.

4.4 Analytical comparison under various DoS attacks

Currently, various DoS attacks have been found existing in real-world networks, such as IP spoofing attack,
reflection attack, replay attack and pre-computation attack.

Clearly, since TCPS does not verify whether the client’s IP address and the client nonce are genuine, it may
seriously suffer from IP spoofing attacks and reflection attacks. On the contrary, as shown in Fig.1, ACPS checks
the validity of the client’s session identifier in the second stage. This checking operation can effectively defend
against IP spoofing attacks and reflection attacks.

To counter replay attacks, ACPS checks the freshness of the global session identifier 〈SIC,SIS〉 in the third
stage; while TCPS keeps book of the correctly solved puzzle instances to defeat such attacks. That is, both the two
schemes are able to defend against replay attacks. Furthermore, the two schemes also use those periodically changed
data, such as the server nonce and server secret, to mitigate pre-computation attacks. Specifically, ACPS
additionally makes use of client status and time to adaptively adjust the puzzle difficulty to cope with
pre-computation attacks without significantly influencing legitimate clients’ experiences, but TCPS can only
broadcast a puzzle with the unified difficulty to all clients. Therefore, ACPS can handle pre-computation attacks
more effectively.

In summary, ACPS can perform more effectively than TCPS under various DoS attacks.

5 Case Study

P2P computing has emerged as a popular model aiming at further utilizing Internet resources, and goes beyond
services offered by the traditional client-server model. Nowadays, the use of P2P applications is growing
dramatically, and meanwhile, the P2P traffic has become the major traffic over the Internet[14]. However, due to the
decentralized and unauthenticated nature, each participating peer has to manage the risks involved in the
transactions without adequate experience and knowledge about other peers. This enables malicious peers to misuse
resources and mount DoS attacks against arbitrary peers.

In terms of both the number of participating peers and the traffic volume, KaZaA[15] is one of the most
important P2P networks on the Internet today. To evaluate the applicability of ACPS representatively, we utilize
ACPS complementary with TCPS to develop an adaptive DoS-resistant security framework for KaZaA overlay
network (abbr., ADSF).

5.1 KaZaA overlay network

In KaZaA, as shown in Fig.2, the overlay network consists of ordinary peers and super peers. Each ordinary
peer provides several shared files, and transmits the meta-data of these files to a super peer. Some powerful ordinary
peers with high bandwidth, enough disk space, strong processing power and sufficient uptime can be selected as
super peers to facilitate searching by caching the meta-data. Each super peer covers a set of ordinary peers, and acts
as a Napster-like[16] proxy to the KaZaA overlay network. A super peer and all the ordinary peers constitute a
cluster. For searching a file, an ordinary peer issues a query to the associated super peer, and then the super peer
performs a Gnutella-like[17] broadcasting in a highly pruned overlay network of super peers to lookup the requested
file.

2566 Journal of Software 软件学报 Vol.20, No.9, September 2009

Fig.2 KaZaA overlay network, where SP and OP denote super peer and ordinary peer respectively

5.2 Adaptive DoS-resistant security framework for KaZaA overlay network (ADSF)

When there is no evidence of attack, a super peer accepts queries normally, that is, indiscriminately; otherwise,
when a super peer comes under attacks, it should accept these queries selectively. As indicated in Fig.3, ADSF
consists of two modules, i.e., detection module and protection module. Both modules are deployed at super peers for
security enhancement.

Fig.3 Modules of the adaptive DoS-resistant security framework for KaZaA overlay network

Detection module: This module is the front end of ADSF. It monitors the super peer’s status, and adopts
suitable response policy based on the system load of the super peer. Here, the system load is defined as the ratio of
consumed resources to total resources possessed by the super peer, i.e.,

i
consumed

i i
total

RL
R

= (6)

where
• Li: The system load of super peer i;

• i
consumedR and i

totalR : The consumed resources and the total resources possessed by super peer i respectively.

If the system load of super peer i exceeds a predefined threshold Θdet, the detection module deployed at super
peer i considers that the super peer comes under DoS attacks, and it immediately triggers the protection module of
the super peer.

Protection module: This module integrates both ACPS and TCPS to defend against various DoS attacks.
Specifically, it adopts ACPS to handle the intra-cluster queries, and utilizes TCPS to cope with the inter-cluster
queries.

OP

OP

OP

OP

OP

OP

OP

OP

OP OP

OP

OP

SP SP

SPSP

Cluster

Cluster Cluster

Cluster

Perform client puzzle schemes

Detection
moduleN

Protection
moduleN

Y

Y

Overloaded?

Overloaded?

Moniter system status

陈瑞川 等:一种抵御拒绝服务攻击的自适应客户端难题 2567

• Intra-Cluster queries: These queries are generally transmitted between ordinary peers and super peers. If an
ordinary peer wants to issue a query to the heavily loaded super peer, it has to initiate a transaction using
ACPS. Since ACPS has the capacity of effectively defending against all kinds of typical DoS attacks, it is
well-suited for the complicated intra-cluster environment;

• Inter-Cluster queries: This kind of queries must be efficiently performed between super peers to guarantee
the system performance. To defeat inter-cluster DoS attacks, the heavily loaded super peer periodically
distributes a traditional puzzle to all its neighboring super peers. Once a neighboring super peer wants to
issue a query to the heavily loaded super peer, it has to solve the specific puzzle and submit the correct
puzzle solution in a limited time interval. Sometimes, if a non-neighboring super peer expects to issue a
query to the heavily loaded super peer, it should first initiate a request acquiring the specific puzzle; then,
the non-neighboring super peer solves the puzzle and submits the solution as usual. Since the puzzle is
reusable in a period of time, TCPS can efficiently handle a considerable number of queries; however, it
cannot effectively defend against IP spoofing attacks, reflection attacks and pre-computation attacks
launched by malicious super peers. To overcome this shortcoming, we should elect a super peer considering
not only bandwidth, disk space, processing power and uptime, but also some other information reflecting
peers’ previous behaviors. In particular, we take the count of puzzles solved by a peer during a recent period
of time into consideration.

During the working time of protection module, the super peer frequently checks its own status. If the system
load falls below another predefined threshold Θpro, the protection module is terminated, and the detection module is
triggered simultaneously. Commonly, Θpro<Θdet, this prevents the super peer from triggering and terminating the
protection module too often during continuous DoS attacks.

6 Experimental Evaluation

In this section, we first present the performance metrics, and then we describe the simulation setup of our
following experiments, finally we evaluate the performance of ADSF and compare it with the performance of some
other frameworks in suppressing various DoS attacks.

6.1 Performance metrics

A well-designed DoS-resistant security framework should seek to optimize its effectiveness under various DoS
attacks. In our experiments, we characterize the system effectiveness by calculating the following two performance
metrics:

Fraction of legitimate performed queries is defined as the ratio of legitimate queries, which are successfully
performed by super peers, to all the performed queries. This metric reflects whether a framework can effectively
filter out DoS attacks.

Fraction of failed legitimate queries is simply the failure rate of legitimate queries. It actually indicates
whether a framework influences the legitimate peers’ experiences.

6.2 Simulation setup

To evaluate the performance, we need to generate a KaZaA overlay network with various parameters, all of
which should follow certain distributions. Specifically, all the following experiments are simulated on an
OpenPower720 with four-way dual-core POWER5 CPUs and 16GB RAM running SLES 9.1.

Cluster size: In the experiments, we simulate 10 000 peers existing in the system. Previous measurement study
implies that about 1% of all the participating peers are suitable to be super peers[15]. In our experiments, each

2568 Journal of Software 软件学报 Vol.20, No.9, September 2009

ordinary peer is attached uniformly at random to one of those super peers. That is, every cluster maintained by a
super peer consists of about 100 ordinary peers.

Peer constitution: Since we have already revised the super peer selection algorithm by considering some
information reflecting peers’ previous behaviors as described in Section 5.2, it is relatively difficult for an attacker
to be selected as a super peer. In our experiments, we assume that attackers take up 5% of all the super peers.
However, the constitution of ordinary peers is more complicated, so we evaluate the system performance by
changing the fraction of malicious ordinary peers.

Peer degree: P2P overlay topologies have the power law property[18]. In our experiments, peer degree, i.e., the
count of a participating peer’s inter-peer connections, obeys power law, and it ranges from 5 to 7.

Replication ratio of a file: The replication ratio of a file is proportional to the file’s popularity, and it follows
Zipf distribution[19]. In the following experiments, the replication ratio of a file follows Zipf distribution over [1‰,
5%] with Zipf parameter being equal to 0.8[20].

Count of files stored at each peer: A peer may share several files, and it follows the distribution as shown in
Table 1[21].

Table 1 Count of files stored at each peer
Count of files Percentage of peers (%)

0 25
[1,10] 20

[10,100] 30
[100,1000] 18

[1000,10000) 7

Query file frequency: Queries with a certain TTL (=4) for different files are initiated at random peers on the
network topology, and the query frequency of a certain file is proportional to the count of the file’s replicas[19].

Query frequency: Individual peers issue queries using a Poisson process with an average rate of 0.3 queries per
minute, i.e., 12 805 unique IP addresses have issued 1 146 782 queries during 5 hours[22].

Resources of a super peer: Each super peer possesses 50 resources to perform queries; for the sake of
simplicity, each performed query needs to occupy a resource for 20 seconds. Specifically, if a super peer’s resources
are exhausted, the super peer will discard all the newly incoming queries.

Other parameters: The change cycle of server nonce and server secret is 5 minutes; the two thresholds, Θdet
and Θpro, are set to 0.8 and 0.6, respectively.

6.3 Experiments

6.3.1 Computation cost
In this experiment, we simulate an attacker to solve the adaptive puzzle. Each simulation is run 1 000 times and

the results of all runs are averaged. Note that, we use SHA1 as the cryptographic hash function h.
To solve an adaptive puzzle with difficulty k, a peer needs to perform a brute-force search to find the solution.

Analytically, the cost of solving the puzzle depends exponentially on the puzzle difficulty k. The experimental
results shown in Table 2 validate this analysis. Furthermore, these results also indicate that if the puzzle difficulty is
lower than 18, the puzzle can be quickly solved; whereas, if the puzzle difficulty exceeds 26, a peer has to spend
more than 24.728 seconds (71 810 216 SHA1 computations) in solving the specific puzzle. Such a long time
prevents any attacker from launching a successful DoS attack. Thus, we set kmax used in Eq.(2) and Eq.(5) to 27, and
tune the corresponding weight parameters to ensure that the puzzle difficulty varies between 18 and 27. Specifically,
in the following experiments, α and β used in Eq.(2) are set to 27 and 1; α, β, γ and δ in Eq.(5) are set to 2 700, 1, 1
and 1, respectively.

陈瑞川 等:一种抵御拒绝服务攻击的自适应客户端难题 2569

Table 2 Computation cost
Minimum Maximum Average k

Cycles Time (s) Cycles Time (s) Cycles Time (s)
18 9 0.000 2 484 101 0.852 261 521 0.090
19 54 0.000 4 707 211 1.614 517 495 0.177
20 55 0.000 13 656 169 4.683 1 028 252 0.353
21 298 0.000 26 198 737 8.989 2 127 627 0.730
22 321 0.000 44 798 185 15.365 4 205 440 1.442
23 391 0.000 84 362 683 28.937 8 495 798 2.915
24 463 0.000 153 380 067 52.959 17 303 478 5.935
25 424 0.000 284 934 572 98.254 34 881 510 12.023
26 638 0.000 565 717 647 194.823 71 810 216 24.728

6.3.2 Performance evaluation and comparison

In the following experiments, we evaluate the performance of ADSF under various DoS attacks, and compare it
with the performance of some other frameworks.

1) IP spoofing attack and reflection attack: Since the reflection attack is usually associated with IP spoofing
attack, we combine the two attacks as a kind of mixed attack. Concretely, with 50% of all attacks being IP spoofing
attacks and the other 50% being reflection attacks, we evaluate the system performance and compare it with the
performance of TCPS, secure overlay services[23] (SOS) and non DoS-resistant framework (NONE). Especially,
TCPS framework utilizes the traditional client puzzle scheme to cope with both intra-cluster and inter-cluster
queries; the SOS framework allows all super peers to be its secure overlay access points (SOAPs), and all those
SOAPs compose a Chord[24] ring to route the queries.

As shown in Fig.4, while the attack frequency is set to 5Hz, we simulate these four frameworks with the
fraction of malicious ordinary peers changing from 0% to 30% in steps of 5% for each run of the experiment. The
results show that TCPS suffers from a severe degradation of services, SOS can relatively effectively defeat IP
spoofing attacks and reflection attacks, and the system without any DoS-resistant framework cannot survive under
these two kinds of DoS attacks. Obviously, ADSF can defend against almost all these attacks no matter how many
malicious ordinary peers exist in the network. The results also indicate that the performance of SOS is robust to the
scale of malicious ordinary peers; however, it is drastically affected by the malicious super peers because even a
minority of malicious super peers (=5% in our experiment) existing in the system can induce a serious performance
degradation.

With the same parameters, we evaluate whether these frameworks influence legitimate peers’ experiences by
calculating the fraction of failed legitimate queries. Figure 5 indicates that ADSF can successfully perform almost
all the legitimate queries (the small quantity of those failed legitimate queries are mostly due to the fact that some
peers cannot solve the specific puzzles before the forthcoming change-point); TCPS has the capacity of performing
more than 80% of all the legitimate queries; NONE denies almost all the legitimate queries, and it cannot work
normally at all; SOS can perform most of legitimate queries when the fraction of malicious ordinary peers is lower
than 20%, whereas its performance decreases rapidly when the fraction exceeds 20%.

Next, we fix the fraction of malicious ordinary peers to 10%, and calculate the fraction of legitimate performed
queries with different attack frequencies. Figure 6 indicates that both ADSF and TCPS are robust to the change of
attack frequency, and ADSF significantly outperforms TCPS; NONE cannot work normally at all. Somewhat
interestingly, the experimental results additionally show that SOS can work well when the attack frequency is
relatively low, but its performance decreases quickly with the growth of attack frequency. This phenomenon is due
to the fact that SOS verifies the queries by utilizing IPsec or TLS which are considerably expensive and create new
opportunities for attackers to launch DoS attacks.

Finally, we evaluate the fraction of failed legitimate queries with the same simulation parameters as described

2570 Journal of Software 软件学报 Vol.20, No.9, September 2009

in the previous experiment. The results shown in Fig.7 demonstrate that ADSF performs almost all the legitimate
queries, and it is superior to TCPS; the performance of SOS decreases gradually with the increase of attack
frequency; NONE works poorly under IP spoofing attacks and reflection attacks.

Fig.4 Fraction of legitimate performed queries vs. Fig.5 Fraction of failed legitimate queries vs.
fraction of malicious ordinary peers, under IP fraction of malicious ordinary peers, under IP

spoofing attacks and reflection attacks spoofing attacks and reflection attacks
(attack frequency=5Hz) (attack frequency=5Hz)

Fig.6 Fraction of legitimate performed queries vs. Fig.7 Fraction of failed legitimate queries vs.
attack frequency, under IP spoofing attacks attack frequency, under IP spoofing attacks

and reflection attacks and reflection attacks
(fraction of malicious ordinary peers=10%) (fraction of malicious ordinary peers=10%)

2) Replay attack and pre-computation attack: These two kinds of DoS attacks have the capacity of subverting
client puzzle based DoS-resistant frameworks. In the following experiments, we further evaluate the effectiveness of
ADSF under replay attacks and pre-computation attacks, and directly compare it with that of TCPS.

First, we simulate both frameworks under replay attacks with different fractions of malicious ordinary peers
and different attack frequencies. The experimental results definitely prove that ADSF and TCPS can effectively
defend against all the replay attacks without discarding the legitimate queries except for some overtime legitimate
queries which are not submitted before the forthcoming change-point of server nonce or server secret. This validates
our analysis described in Section 4.4.

Subsequently, we tune the attack frequency to 5Hz, and evaluate the fraction of legitimate performed queries

Fr
ac

tio
n

of
 le

gi
tim

at
e

pe
rf

or
m

ed
 q

ue
rie

s
(%

)

0

0

0

0

0

0

0

0

0

0

0

ADSF
TCPS
SOS
NONE

Fraction of malicious ordinary peers (%)

100
90
80
70
60
50
40
30
20
10

0
0 5 10 15 20 25 30

A
T
S
N

ADSF
TCPS
SOS
NONE

Fr
ac

tio
n

of
 fa

ile
d

le
gi

tim
at

e
qu

er
ie

s
(%

)

Fraction of malicious ordinary peers (%)

100
90
80
70
60
50
40
30
20
10

0
0 5 10 15 20 25 30 0 5 10 15 20 25 30

0

0

0

0

0

0

0

0

0

0

0
ADSF
TCPS
SOS
NONE

A
T
S
N

ADSF
TCPS
SOS
NONE

Fr
ac

tio
n

of
 fa

ile
d

le
gi

tim
at

e
qu

er
ie

s
(%

)

Attack frequency (Hz)

100
90
80
70
60
50
40
30
20
10

0
0 2 4 6 8 10

0

0

0

0

0

0

0

0

0

0

0
ADSF
TCPS
SOS
NONE

A
T
S
N

ADSF
TCPS
SOS
NONE

Fr
ac

tio
n

of
 le

gi
tim

at
e

pe
rf

or
m

ed
 q

ue
rie

s
(%

)

Attack frequency (Hz)

100
90
80
70
60
50
40
30
20
10

0
0 2 4 6 8 10

0

0

0

0

0

0

0

0

0

0

0

ADSF
TCPS
SOS
NONE

A
T
S
N

ADSF
TCPS
SOS
NONE

陈瑞川 等:一种抵御拒绝服务攻击的自适应客户端难题 2571

under pre-computation attacks. Fig.8 demonstrates that those pre-computation attacks influence the performance of
both ADSF and TCPS; however, ADSF greatly outperforms TCPS, and it can still work well in the highly malicious
environment because its fraction of legitimate performed queries exceeds 75% even with 30% of all the ordinary
peers being attackers. This improvement is achieved because the ACPS applied by ADSF additionally utilizes client
status and time to adjust the puzzle difficulty to mitigate pre-computation attacks.

Then, we fix the fraction of malicious ordinary peers to 10%, and evaluate whether ADSF and TCPS can
effectively defend against pre-computation attacks with different attack frequencies. As shown in Fig.9, both the
two frameworks are robust to the change of the frequency of pre-computation attacks, and ADSF can defend against
pre-computation attacks more effectively.

Fig.8 Fraction of legitimate performed queries vs. Fig.9 Fraction of legitimate performed queries vs.
fraction of malicious ordinary peers, under attack frequency, under pre-computation attacks

pre-computation attacks (attack frequency=5Hz) (fraction of malicious ordinary peers=10%)

Finally, we evaluate the fraction of failed legitimate queries under pre-computation attacks. As shown in Fig.10
and Fig.11, the experimental results are similar to the results under IP spoofing attacks and reflection attacks, i.e.,
ADSF is superior to TCPS, and it always successfully performs more than 94% of all the legitimate queries. That is,
ADSF does not significantly influence legitimate peers’ experiences under pre-computation attacks.

Fig.10 Fraction of failed legitimate queries vs. Fig.11 Fraction of failed legitimate queries vs.
fraction of malicious ordinary peers, under attack frequency, under pre-computation attacks

pre-computation attacks (attack frequency=5Hz) (fraction of malicious ordinary peers=10%)

3) Combined attack: All of the above experiments independently evaluate the performance of ADSF from the
viewpoints of different attack categories. However, in real-world networks, these four kinds of DoS attacks may mix
with each other, and act as a combined attack to destroy the system. Therefore, we need to evaluate the effectiveness
of ADSF under combined attacks to reflect the system performance more realistically.

In this experiment, each of these four DoS attacks takes up one quarter of the combined attacks. To evaluate
the performance, we first calculate the fraction of legitimate performed queries with the fraction of malicious

Fr
ac

tio
n

of
 le

gi
tim

at
e

pe
rf

or
m

ed
 q

ue
rie

s
(%

)

Fraction of malicious ordinary peers (%)

100
90
80
70
60
50
40
30
20
10

0
0 5 10 15 20 25 30

0

0

0

0

0

0

0

0

0

0

0
ADSF
TCPS

A
T
S

ADSF
TCPS Fr

ac
tio

n
of

 le
gi

tim
at

e
pe

rf
or

m
ed

 q
ue

rie
s

(%
)

100
90
80
70
60
50
40
30
20
10

0

Attack frequency (Hz)
0 2 4 6 8 10

0

0

0

0

0

0

0

0

0

0

0

ADSF
TCPS

A
T
S

ADSF
TCPS

Fr
ac

tio
n

of
 fa

ile
d

le
gi

tim
at

e
qu

er
ie

s
(%

)

100
90
80
70
60
50
40
30
20
10

0

Attack frequency (Hz)
0 2 4 6 8 10
0

0

0

0

0

0

0

0

0

0

0
ADSF
TCPSA

T
S

ADSF
TCPS

Fraction of malicious ordinary peers (%)
0 5 10 15 20 25 30

Fr
ac

tio
n

of
 fa

ile
d

le
gi

tim
at

e
qu

er
ie

s
(%

)

100
90
80
70
60
50
40
30
20
10

00

0

0

0

0

0

0

0

0

0

0
ADSF
TCPS

A
T
S

ADSF
TCPS

2572 Journal of Software 软件学报 Vol.20, No.9, September 2009

ordinary peers changing from 0% to 30%, and the attack frequency varying from 1Hz to 10Hz simultaneously. The
result surface plotted in Fig.12(a) demonstrates that the performance of ADSF decreases slightly with the growth of
the fraction of malicious ordinary peers; moreover, it is robust to the change of attack frequency. Furthermore,
ADSF can work well under intensive combined attacks since the fraction of legitimate performed queries exceeds
88% even in the highly malicious environment.

Since ADSF always has the capacity of successfully performing almost all the legitimate queries under various
individual attacks, we expect that ADSF will hold the same property under combined attacks. The experimental
results shown in Fig.12(b) prove our expectation, i.e., ADSF always works well and performs more than 96% of
legitimate queries even under highly intensive combined attacks. That is, legitimate peers will experience only a
small degradation of services.

(a) (b)
Fig.12 ADSF under combined attacks, with fraction of malicious ordinary peers changing

from 0% to 30% and attack frequency varying from 1Hz to 10Hz

7 Conclusion and Future Work

In this paper, we study the traditional client puzzle scheme, and propose a novel adaptive client puzzle scheme
which can perform a lightweight client-server interaction to flexibly adjust the puzzle difficulty based on the
real-time statuses of both client and server. To evaluate the applicability, we further develop an adaptive
DoS-resistant security framework for P2P networks. The theoretical analyses and experimental results indicate that
the adaptive client puzzle scheme can effectively defend against various DoS attacks including IP spoofing attack,
reflection attack, replay attack and pre-computation attack without significantly influencing legitimate peers’
experiences even in a highly malicious environment.

For future work, we plan to integrate our adaptive client puzzle scheme with other advanced DoS defense
mechanisms to further improve its performance, and extend its application field to some other kinds of networks,
e.g., sensor networks and ad-hoc networks.

References:
[1] Handley M, Rescorla E. Internet denial-of-service considerations (RFC4732). 2006. http://www.ietf.org/rfc/rfc4732.txt
[2] Parno B, Wendlandt D, Shi E, Perrig A, Maggs B, Hu YC. Portcullis: Protecting connection setup from denial-of-capability attacks.

In: Proc. of the ACM SIGCOMM 2007. 2007. 289−300.
[3] Aura T, Nikander P, Leiwo J. DOS-Resistant authentication with client puzzles. In: Proc. of the 8th Int’l Workshop on Security

Protocols. 2000. 170−177.
[4] Merkle R. Secure communications over insecure channels. Communications of the ACM, 1978,21(4):294−299.
[5] Dwork C, Naor M. Pricing via processing or combatting junk mail. In: Proc. of the CRYPTO’92. 1992. 139−147.

0510152025

0

2

4

6

8

10

8

0

2

4

6

8

0

Fr
ac

tio
n

of
 le

gi
tim

at
e

pe
rf

or
m

ed
 q

ue
rie

s
(%

)

Fraction of malicious ordinary peers (%)

100
98
96
94
92
90
88

0
2

Attack frequency (Hz)

0
4

6
8

30 10 25 20 15 10 5
5 10 15 20 25 3

0

2

4

6

8

0
5

1

5

2

5

3

5

4

ency (Hz)

Fr
ac

tio
n

of
 fa

ile
d

le
gi

tim
at

e
qu

er
ie

s
(%

)

Fraction of malicious ordinary peers (%)

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
10

2

Attack frequency (Hz)
0

4
6

8

30
0

25
10 15 20

5

陈瑞川 等:一种抵御拒绝服务攻击的自适应客户端难题 2573

[6] Juels A, Brainard J. Client puzzles: A cryptographic countermeasure against connection depletion attacks. In: Proc. of the 1999
Network and Distributed System Security Symp. (NDSS). 1999. 151−165.

[7] Abadi M, Burrows M, Manasse M, Wobber T. Moderately hard, memory-bound functions. ACM Trans. on Internet Technology
(TOIT), 2005,5(2):299−327.

[8] Rivest R, Shamir A, Wagner D. Time-Lock puzzles and timed-release crypto. Technical Report, MIT-LCS-TR-684, MIT, 1996.
[9] Bocan V. Threshold puzzles: The evolution of DOS-resistant authentication. Trans. on Automatic Control and Computer Science,

2004,49(63).
[10] Wang X, Reiter M. Defending against denial-of-service attacks with puzzle auctions. In: Proc. of the 2003 IEEE Symp. on Security

and Privacy. 2003. 78−92.
[11] Laurens V, Saddik A, Nayak A. Requirements for client puzzles to defeat the denial of service and the distributed denial of service

attacks. Int’l Arab Journal of Information Technology, 2006,3(4):326−333.
[12] Meadows C. A formal framework and evaluation method for network denial of service. In: Proc. of the 12th IEEE Computer

Security Foundations Workshop. 1999. 4−13.
[13] Krawczyk H, Bellare M, Canetti R. HMAC: Keyed-Hashing for message authentication (RFC2104). 1997. http://www.ietf.org/rfc/

rfc2104.txt
[14] Cho K, Fukuda K, Esaki H, Kato A. The impact and implications of the growth in residential user-to-user traffic. In: Proc. of the

ACM SIGCOMM 2006. 2006. 207−218.
[15] Liang J, Kumar R, Ross K. The KaZaA overlay: A measurement study. Computer Networks Journal (Special Issue on Overlay

Distribution Structures and their Applications), 2005.
[16] Napster. http://www.napster.com/
[17] Gnutella. http://www.gnutella.com/
[18] Chawathe Y, Ratnasamy S, Breslau L, Lanham N, Shenker S. Making Gnutella-like P2P systems scalable. In: Proc. of the ACM

SIGCOMM 2003. 2003. 407−418.
[19] Merugu S, Srinivasan S, Zegura E. Adding structure to unstructured peer-to-peer networks: the role of overlay topology. In: Proc.

of the Networked Group Communication (NGC). 2003.
[20] Liang J, Kumar R, Xi Y, Ross K. Pollution in P2P file sharing systems. In: Proc. of the IEEE INFOCOM 2005. 2005. 1174−1185.
[21] Saroiu S, Gummadi P, Gribble S. A measurement study of peer-to-peer file sharing systems. In: Proc. of the Multimedia Computing

and Networking. 2002.
[22] Sripanidkulchai K. The popularity of Gnutella queries and its implications on scalability. In: Proc. of the O’Reilly Peer-to-Peer and

Web Services Conf. 2001.
[23] Keromytis A, Misra V, Rubenstein D. SOS: An architecture for mitigating DDoS attacks. IEEE Journal on Selected Areas in

Communications, 2004,22(1):176−188.
[24] Stoica I, Morris R, Karger D, Kaashoek M, Balakrishnan H. Chord: A scalable peer-to-peer lookup service for Internet applications.

In: Proc. of the ACM SIGCOMM 2001. 2001. 149−160.

CHEN Rui-Chuan was born in 1982. He
is a Ph.D. candidate at Peking University.
His current research areas are distributed
computing and network security.

 TANG Li-Yong was born in 1972. He is
an associate professor at Peking
University. His current research area is
network security.

GUO Wen-Jia was born in 1983. He is a
master student at Peking University. His
current research area is distributed
computing.

 CHEN Zhong was born in 1963. He is a
professor at Peking University and a CCF
senior member. His current research areas
are network security and software
engineering.

