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Abstract:  This paper studies proxy signatures in the newly proposed certificateless public key setting. The authors 
present a very strong security model for certificateless proxy signature schemes against both Super Type I 
Adversary and Super Type II Adversary. And also an efficient construction of certificateless proxy signature scheme 
using bilinear maps is put forward. The security of this scheme is based on the infeasibility of the Computational 
Diffie-Hellman problem and is formally proven under the security model of certificateless proxy signature schemes. 
Due to its security, high efficiency and freedom from certificate management, it may have practical applications in 
electronic commerce and mobile agent systems, etc. 
Key words:  certificateless cryptography; bilinear map; computational Diffie-Hellman problem; proxy signature; 
 random Oracle 

摘  要: 研究在新提出的无证书公钥密码系统下的代理签名问题,给出了无证书代理签名方案非常强的安全

模型.该安全模型下的攻击者是能力最强的超级类型 I 和类型 II 攻击者.同时,利用双线性映射设计了一个高效

的无证书代理签名方案.其安全性基于计算 Diffie-Hellman 问题的困难性,并在此安全模型下给出正式的安全证

明. 鉴于方案的安全、高效和无证书管理的优点,它可广泛应用于电子商务、移动代理系统等方面. 
关键词: 无证书密码系统;双线性映射;计算 Diffie-Hellman 问题;代理签名;随机预言器 
中图法分类号: TP309   文献标识码: A 

1   Introduction 

The concept of proxy signature was first introduced by Mambo, Usuda and Okamoto[1] in 1996. In a proxy 
signature scheme, one user A, called original signer, delegates his signing capability to another user B, called proxy 
signer. Upon receiving a proxy signature on some message, a verifier can check its correctness according to a given 
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verification procedure, and further be convinced of the original signer’s agreement on the signed message. For a 
secure proxy signature scheme, the following requirements must be satisfied: correctness, strong unforgeability, 
verifiability, prevention of misuse, strong undeniability and strong identifiability. Proxy signatures have found lots 
of practical applications in areas such as electronic commerce, global distribution networks, and mobile agent 
systems, etc. To adapt to different situations, many variants of proxy signature scheme are studied, such as threshold 
proxy signature[2], proxy multi-signature[3], Designated Verifier Proxy Signature[4], ID-based proxy signature[5] and 
so on. We notice that almost all proxy signature schemes available in the literature are based on the traditional 
public key cryptography (TPKC) or the identity-based cryptography (IBC). And it is widely known that the TPKC 
requires heavy cost on certificate management while IBC suffers from the key escrow problem. 

In 2003, Al-Riyami and Paterson[6] introduced an intermediate model between TPKC and IBC, known as 
certificateless public key cryptography (CL-PKC). Having no certificates that are essential in TPKC, CL-PKC 
achieves implicit certification without suffering from the inherent key escrow problem in IBC. Therefore, CL-PKC 
still keeps the advantages enjoyed by TPKC and IBC. Since the appearance of CL-PKC, it has attracted the attention 
of many researchers and there have been several interesting works on certificateless signature schemes[7−10]. The 
advantages of certificateless cryptography and the distinguished characteristics of proxy signature schemes make it 
very interesting to construct secure and efficient certificateless proxy signature (CLPS) schemes. In 2005, Li, et al.[9] 
proposed the first certificateless proxy signature scheme without any formal security proof. Unfortunately, their 
scheme was found insecure. Recently, Lu, et al.[10] and Yap, et al.[11] respectively pointed out its security flaws. To 
the best of our knowledge, no appropriate security model and secure CLPS scheme are available in the literature.  

We investigate the appropriate security model and the construction of secure CLPS scheme in this paper. We 
introduce a security model of certificateless proxy signature schemes. In the security model, the adversaries are 
Super Type I Adversaries and Super Type II Adversaries[7] with the strongest attack power. At the same time, a 
provably secure CLPS scheme in the given security model is put forward. Our scheme meets only two pairing 
operations in the proxy signing and verification processes and enjoys all the security requirements for proxy 
signatures. We provide formal security proofs for our scheme under the assumption that the Computational 
Diffie-Hellman problem is intractable.  

In the next section, we show some preliminaries and the background knowledge required throughout the 
paper. In Section 3, we introduce the security model of the CLPS schemes. In Section 4, we present our concrete 
CLPS scheme. Its security and efficiency analysis are given in Section 5. Section 6 concludes this paper.  

2   Preliminaries 

2.1   Bilinear maps and computational problem 

Let G1 denote an additive group of prime order q and G2 be a multiplicative group of the same order. Let P 
denote a generator of G1. A map e: G1×G1→G2 is called a bilinear map, if it has the following properties: 

1. Bilinear: e(aP, bQ)= e(P, Q)ab for P, Q∈G1, a, b∈Zq
*. 

2. Non-Degeneracy: There exists P, Q∈G1 such that e(P, Q)≠1G2. 
3. Computable: There exists an efficient algorithm to compute e (P, Q) for any P, Q∈G1. 
Computational Diffie-Hellman (CDH) Problem.  
Given a randomly chosen P∈G1, as well as aP, bP (for unknown a, b∈Zq

*), to compute abP. 

2.2   The concept of CLPS 

A certificateless proxy signature scheme involves an original signer and a proxy signer. It consists of ten 
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algorithms: Setup, Partial-Private-key-Extract, Set-Secret-Value, Set-Public-Key, Set-Private-Key, Partial- 
Proxy-Key-Generate, Partial-Proxy-Key-Verify, Set-Proxy-Key, Proxy-Sign and Proxy-Verify. The formal 
definitions of the first five algorithms are the same as those in a certificateless signature scheme. Readers can refer 
to Ref.[6] for details. The others are formally defined as follows: 

Partial-Proxy-Key-Generate: An algorithm which takes as input a parameter list param, a warrant mw, an 
original signer’s public/private key and identity to generate a partial proxy key. This algorithm is run by the original 
signer. 

Partial-Proxy-Key-Verify: An algorithm which accepts a parameter list param, a warrant mw, an identity and 
public key of an original signer, and a partial proxy key to returns True if the partial proxy key is correct, or False 
otherwise. This algorithm is run by a proxy signer. 

Set-Proxy-Key: An algorithm which accepts a parameter list param, a partial proxy key, and a proxy signer’s 
private key to output a proxy key. This algorithm is run by a proxy signer. 

Proxy-Sign: An algorithm which accepts a parameter list param, a warrant mw, a message m, an identity and 
public key of the original signer, an identity and public key of the proxy signer, and a proxy key to generate a proxy 
signature σ on message m. This algorithm is run by a proxy signer. 

Proxy-Verify: An algorithm which accepts a parameter list param, a message m, a warrant mw, a proxy 
signature σ, an original signer’s identity and public key, and a proxy signer’s identity and public key to return 
True if the signature is correct , or False otherwise. 

3   Security Model of CLPS  

Similar to the adversaries against certificateless signature scheme defined in Ref.[7], for the security of 
certificateless proxy signature schemes we consider two types of adversaries, namely Super Type I Adversary, Super 
Type II Adversary with different capabilities in CLPS schemes.  

Super Type I Adversary: A Type I Adversary AI does not have access to the master-key, but AI has the ability 
to replace the public key of any entity with a value of his choice.  

Super Type II Adversary: A Type II Adversary AII has access to the master-key but cannot replace the target 
user’s public key.  

Informally speaking, a secure CLPS scheme should prevent an adversary from producing any valid new 
message-proxy signature pair without the knowledge of the private proxy key of the proxy signer even if he has 
already gotten many valid message-proxy signature pairs. 

To formally define the security of CLPS schemes, we demonstrate a game played between a challenger Ω and 
an adversaryΓ∈{AI, AII}.  

Setup: Ω runs the Setup algorithm of the CLPS scheme, takes as input a security parameter  to obtain a 
master-key and the system parameter lists param. Ω then sends param to the adversary Γ. If Γ is a AII, Ω also 
sends the master-key toΓ. Note that is a security parameter throughout the paper. 

Attack: The adversaryΓ can get access to the following oracles (as well as the random oracles if there exists), 
which are controlled by Ω. 

• Create-User oracle: This algorithm takes as input an identity ID. If ID has already been created, nothing is to 
be done by this algorithm. Otherwise, it runs the algorithms Partial-Private-key-Extract, Set-Secret-Value, Set 
-Public-Key to obtain the partial private key DID, secret value xID and public key PID. Then it adds (ID, DID, xID, PID) 
to the list L. In this case, ID is said to be created. In both cases, PID is returned. 

• Partial-Private-Key oracle: (For AI only) On input an identity ID, which has been created, the oracle browses 
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the list L and returns the partial private key DID corresponding to the ID as answer.  

• Public-Key-Replacement oracle: Taking as input an identity ID and a new public key IDP′ , where ID denotes 

the created identity, the oracle replaces the public key of the given identity ID with the new one and updates the 

corresponding information in the list L. 

• Secret-Value oracle: Accepting a created identity ID, the oracle browses the list L and returns the secret value 

xID as answer. Note that, the secret value output by this oracle is the one which is used to generate ID’s original 

public key PID. In addition, it doesn’t output the secret value associated with the replaced public key IDP′ . 
• Partial-Proxy-Key oracle: On input an original signer’s identity IDA and a warrant mw, the oracle outputs a 

partial proxy keyΘA as answer. 
• Proxy-Key oracle: Accepting an original signer’s identity IDA, a proxy signer’s identity IDB, and a warrant mw, 

the oracle outputs a proxy key for the proxy signer as answer. 
• Proxy-Sign oracle: On input a message m, a warrant mw, an original signer’s identity IDA, a proxy signer’s 

identity IDB, the oracle outputs a proxy signature σ as answer. 

Forgery: Finally,Γ outputs a tuple (mw
*, IDA

*, PA
*,ΘA

*) or (m*, mw
*, IDA

*, PA
*, IDB

*, PB
*,σ* ) as its forgery. 

We sayΓ wins the game, if one of the following conditions is satisfied: 

case1: Γ outputs a tuple (mw
*, IDA

*, PA
*,ΘA

*) satisfying: 

(1) True ←Verify(param, mw
*, IDA

*, PA
*,ΘA

*); 

(2) IfΓ is AI, IDA
* has never been made Partial-Private-Key query. IfΓ is AII, IDA

* has never been 

made Secret-Value query; 

(3) (mw
*, IDA

*, PA
*) has never been made Partial-Proxy-Key query.  

case2: Γ outputs a tuple (m*, mw
*, IDA

*, PA
*, IDB

*, PB
*,σ* ) satisfying: 

(1) True ←Verify(param, m*, mw
*, IDA

*, PA
*, IDB

*, PB
*,σ* ); 

(2) IfΓ is AI, IDA
* has never been made Partial-Private-Key query. IfΓ is AII, IDA

* has never been 

made Secret-Value query; 

(3) (mw
*, IDA

*, PA
*) has never been made Partial-Proxy-Key query; 

(4) (mw
*, IDA

*, PA
*, IDB

*, PB
*) has never been made Proxy-Key query; 

(5) (m*, mw
*, IDA

*, PA
*, IDB

*, PB
*) has never been made the Proxy-Sign query. 

case3: Γ outputs a tuple (m*, mw
*, IDA

*, PA
*, IDB

*, PB
*,σ*) satisfying: 

(1) True ←Verify(param, m*, mw
*, IDA

*, PA
*, IDB

*, PB
*,σ*); 

(2) IfΓ is AI, IDB
* has never been made Partial-Private-Key query. IfΓ is AII, IDB

* has never been 

made Secret-Value query; 

(3) (mw
*, IDA

*, PA
*, IDB

*, PB
*) has never been made Proxy-Key query; 

(4) (m*, mw
*, IDA

*, PA
*, IDB

*, PB
*) has never been made the Proxy-Sign query. 

The success probability of an adversary to win the game is denoted by ,
,

cma cida
CLPSSucc Γ ε≤（ ） . 

Definition. A certificateless proxy signature scheme is existentially unforgeable against adaptively chosen 

message and chosen identity attack if the success probability of any polynomially bounded adversary in the above 

game is negligible. In other words, ,
,

cma cida
CLPSSucc Γ ε≤（ ） ,whereεis negligible. 

4   Our CLPS Scheme 

We use some ideas of the certificateless signature scheme in Ref.[8]. It consists of the following algorithms:  
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Setup: IG is a bilinear map instance generator. This algorithm runs as follows. 
1. Run IG on input  to generate output (G1, G2, e), where e: G1×G1→G2 is bilinear map.  
2. Choose a random generator P∈G1. 
3. Choose a random master-key s∈RZq

* and set P0=sP. 
4. Choose cryptographic hash functions H1, H2, H3, H4: {0,1}*→G1

*. 
The system parameters param = (G1, G2, e, q, P, P0, H1, H2, H3, H4). The message space is M= {0, 1}*. 
Partial-Private-Key-Extract: This algorithm accepts a user’s identity IDi∈{0,1}* and computes Qi=H1 (IDi) 

to output the partial private key Di=sQi. 
Set-Secret-Value: This algorithm takes as input param and a user’s identity IDi, and selects a random xi∈RZq

* 
and outputs xi as the user’s secret value. 

Set-Public-Key: This algorithm accepts param and a user’s secret value xi to produce the user’s public key Pi= 
xiP. 

Set-Private-Key: This algorithm takes as input param, a user’s partial private key Di, secret value xi, public 
key Pi, and identity IDi. The output of the algorithm is the private key Si=Di+xiTi, where Ti=H2(IDi|| Pi). 

Partial-Proxy-Key-Generate: On input param, a private key SA and a warrant mw, the original signer A with 
the identity IDA and the public key PA computes partial proxy key for the proxy signer B. 

1. Randomly pick rA∈RZq
*and compute RA=rAP. 

2. Compute UA = H3 (mw|| IDA|| PA|| RA) and KA=SA+rAUA. 
3. Output (mw, RA, KA) to B and take ΘA=(RA, KA) as the partial proxy key. 
Note that a warrant mw specifies the delegation relation, the delegation period, what kind of the messages can 

be delegated, etc. 
Partial-Proxy-Key-Verify: Upon receiving (mw, RA, KA), the proxy signer B checks whether e(KA, P) = e(QA, 

P0)e(TA, PA) e(UA, RA) holds. If it does, accept (mw, RA, KA). Otherwise, reject it. 
Set-Proxy-Key: If the proxy signer B with the private keySB accepts(mw, RA, KA), B sets its proxy key as (RA, 

KA, SB). 
Proxy-Sign: To sign a message m, the proxy signer B with identity IDB, public key PB and proxy key (RA, KA, 

SB) performs the following steps: 
1. Randomly pick rB∈RZq

*and compute RB= rBP. 
2. Compute UB=H4(m||mw|| IDB|| PB|| RB) and V= KA +SB + rB UB . 
3. Outputσ=(RA, RB, V) as the proxy signature. 

Proxy-Verify: To verify (m, mw,σ) with the original signer’s identity IDA and public key PA, the proxy signer’s 
identity IDB and public key PB , a verifier executes the following steps; 

1. Check whether or not the message m conforms to mw. If not, rejectσ; otherwise, continue.  
2. Compute QA=H1 (IDA), QB=H1 (IDB), TA=H2(IDA||PA), TB=H2(IDB||PB), UA = H3 (mw||IDA|| PA|| RA), and UB 

= H4 (m||mw|| IDB|| PB|| RB). 
3. Check whether or not the equation e(V, P)= e(QA+QB, P0) e(TA, PA) e(TB, PB) e(UA, RA) e(UB, RB) holds. If it 

does, acceptσ. Otherwise, rejectσ. 

5   Security and Efficiency Analysis  

5.1   Correctness 

The correctness of the proposed scheme can be easily verified. 
e(V, P) = e(KA +SB + rB UB, P) 
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= e(SA + rA UA, P) e(SB, P) e(UB, RB) 
= e(DA + xATA, P) e(DB + xBTB, P) e(UA, RA) e(UB, RB) 
= e(QA + QB, P0) e(TA, PA) e(TB, PB) e(UA, RA) e(UB, RB). 

5.2   Strong unforgeability  
Assuming that the CDH problem is hard, we prove the unforgeability of our CLPS scheme. 

Theorem 1. In the random oracle model, if AI is a super type I adaptively chosen message and chosen identity 

attacker against our CLPS scheme with the success probability ,
, ( )cma cida

CLPS AI
Succ  within a time span t and after asking 

at most qCU Create-user queries, qPPK Partial-Private-Key queries, qPKR Public-Key-Replacement queries, qSV 

Secret-Value queries, qH2 H2 queries, qH3 H3 queries, qH4 H4 queries, qPProK Partial-Proxy-Key queries, qProK 

Proxy-Key queries and qPS Proxy-Sign queries, then there exists an algorithm Ω which can use AI to solve a random 

instance of the CDH problem in G1 within time t′ ≤ t + qCU tCU + qPPK tPPK + qPKR tPKR + qSV tSV + qH2tH2 + qH3tH3+ 

qH4tH4 +qPProK tPProK +qProK tProK +qPS tPS and with the success probability 1 2
, ( )G G

CDHSucc −

Ω ≥ 1 1 ,
,(1 ) ( )PPK ProKq q cma cida

CU CU CLPS AI
q q Succ+− −− , 

where tCU (resp. tPPK, tPKR, tSV, tH2, tH3, tH4, tPProK, tProK and tPS) is the time cost of a Create-user (resp. Partial-Private 

-Key, Public-Key-Replacement, Secret-Value, H2, H3, H4, Partial-Proxy-Key, Proxy-Key and Proxy-Sign) query. 
Proof:  Given a random instance (P, P1=aP, P2=bP) of the CDH problem in G1, we show how Ω can obtain 

the value of abP with the help of the AI. In the proof, we regard the hash functions H1, H2, H3, H4 as the random 
oracles. We assume that AI doesn’t repeat any two identical queries. 

Setup: In this game, Ω sets P0=P1=aP and the system parameters param = (G1, G2, e, q, P, P0, H1, H2, H3, H4). 
Ω returns param to AI. 

Attack: AI can ask Ω Create-User, Partial-Private-Key, public-key-Replacement, Secret-Value, H2, H3, H4, 
Partial-Proxy-Key, Proxy-Key and Proxy-Sign queries. In order to maintain consistency and avoid conflict, Ω 
keeps four lists L, H2, H3, H4 to store the used answers, where L-list (resp. H2-list, H3-list, H4-list) includes items of 
the form (IDi, Qi, Di,αi, xi, Pi) (resp. (IDi, Pi,βi, Ti), (mw

i, IDA
i, PA

i, RA
i, UA

i,γi), (mi, mw
i, IDB

i, PB
i, RB

i, UB
i, hi)). All 

of these lists are initially empty. 
• Create-User oracle: Ω first picks a random f∈{1,2,…,qCU}. Upon receiving AI’s query CU (IDi), Ω picks 

random xi,αi∈Zq
* such that there is no item (*,*,*,αi,*,*) in the L-list. If i≠f, Ω sets Qi=αiP, Di=αiP0, Pi=xiP. If i=f, 

Ω sets Qf=xfP +P2, Df=⊥, Pf= xfP. Finally, Ω adds (IDi, Qi, Di, αi, xi, Pi) into the L-list and returns Pi to AI as 
answer. 

• Partial-Private-Key queries: Whenever Ω receives a query PPK(IDi), Ω first checks the L-list. If i≠f, Ω 
returns Di as answer. If i=f, Ω aborts. 

• Public-Key-Replacement queries: Accepting a query PKR(IDi,Pi'), Ω checks the L-list and updates the tuple 
(IDi, Qi, Di, αi, xi, Pi) as (IDi, Qi, Di, αi,⊥, Pi'). 

• Secret-Value oracle: On receiving a query SV(IDi), Ω first checks the L-list. If xi≠⊥, Ω returns xi as answer. 
Otherwise, Ω returns ⊥ as answer. 

• H2 Queries: On receiving AI’s query H2(IDi || Pi), Ω first picks a randomβi ∈ Zq
* such that there is no item (*, 

*,βi,*) in the H2-list, sets Ti=βiP. Then Ω adds (IDi, Pi, βi, Ti) into the H2-list and returns Ti to AI as answer. 
• H3 Queries: On receiving AI’s query H3(mw

i||IDA
i||PA

i||RA
i), Ω first picks a randomγi∈Zq

* such that there is no 
item (*,*,*,*,*,γi) in the H3-list and sets UA

i=γiP. Then Ω adds (mw
i, IDA

i, PA
i, RA

i, UA
i,γi) into the H3-list and 

returns UA
i to AI as answer.  

• H4 Queries: On receiving AI’s query H4 (mi||mw
i||IDB

i||PB
i||RB

i), Ω first picks a random hi∈Zq
* such that there is 

no item (*,*,*,*,*,*,hi) in the H4-list and sets UB
i=hiP. Then Ω adds (mi, mw

i, IDB
i, PB

i, RB
i,UB

i, hi) into the H4-list 
and returns UB

i to AI as answer. 
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• Partial-Proxy-Key oracle: Upon receiving a query PProK(mw
i, IDA

i
 ), Ω first checks the L-list to get the 

current public key of the IDA
i. Then Ω makes H2(IDA

i ||PA
i) to obtain (IDA

i, PA
i,βi, TA

i) and executes the following 
steps: 

(1) Randomly pick ai, bi∈Zq
*. 

(2) Set RA
i= aiP1, UA

i= H3(mw
i||IDA

i||PA
i||RA

i)=ai
−1(biP−QA

i), and KA
i=biP1+βiPA

i. 
If there is a tuple (mw

i, IDA
i, PA

i, RA
i) in the H3-list, Ω updates ai in order to avoid conflict. Ω returns (RA

i, KA
i) 

to AI as answer and adds (mw
i, IDA

i, PA
i, RA

i,UA
i,⊥) into the H3-list. 

• Proxy-Key oracle: Upon receiving a query ProK( mw
i, IDA

i, IDB
i), Ω checks the L-list to obtain (IDB

i, QB
i, 

DB
i,αB

i, xB
i, PB

i). If the public key of IDB
i has been replaced, Ω returns ⊥. Otherwise, Ω first performs PProK(mw

i, 
IDA

i
 ), H2(IDB

i||PB
i)to obtain the tuples (RA

i, KA
i) and (IDB

i, PB
i,βB

i, TB
i) respectively. 

If IDB
i= IDf, Ω aborts. Otherwise, Ω sets SB

i=DB
i+xB

iTB
i and returns (KA

i, SB
i) to AI as answer. 

• Proxy-Sign oracle: Upon receiving a query PS(mi, mw
i, IDA

i, IDB
i), Ω first checks the L-list to get the current 

public keys of the IDA
i and IDB

i. Then Ω makes H2(IDA
i ||PA

i) and H2(IDB
i ||PB

i) to obtain (IDA
i, PA

i,βA
i, TA

i) and 
(IDB

i, PB
i, βB

i, TB
i) respectively and executes the following steps:  

(1) Randomly pick ai, bi, ci, di∈Zq
*. 

(2) Set RA
i=aiP1, UA

i= H3(mw
i||IDA

i||PA
i||RA

i)=ai
−1(biP−QA

i), and KA
i=biP1+βA

iPA
i. 

(3) Set RB
i=ciP1, UB

i= H4(mi||mw
i||IDA

i||PA
i||RA

i)=ci
−1(diP−QB

i), and Vi= KA
i +diP1+βB

iPB
i. 

If there is a tuple (mw
i, IDA

i, PA
i, RA

i) or (mi, mw
i, IDA

i, PA
i, RA

i) in the H3-list or H4-list, Ω updates ai or ci in order to 
avoid conflict. Ω returns (RA

i, RB
i, Vi) to AI as answer and adds (mw

i, IDA
i, PA

i, RA
i, UA

i,⊥) and (mi, mw
i, IDB

i, PB
i, RB

i, 
UB

i,⊥) into the H3-list and H4-list respectively. 
Forgery: AI outputs a tuple (mw

*,IDA
*,PA

*,ΘA
*=(RA

*,KA
*)) or (m*,mw

*,IDA
*,PA

*,IDB
*,PB

*,σ*=(RA
*,RB

*,V*)). 
(1) If the output is a valid tuple (mw

*,IDA
*,PA

*,ΘA
*=(RA

*,KA
*)) satisfying Case 1 as defined in Section 3, Ω first 

checks L-list, H2-list and H3-list to find (IDA
*,QA

*,DA
*,α*,xA

*,PA
*), (IDA

*,PA
*,β*,TA

*), (mw
*,IDA

*,PA
*,RA

*,UA
*,γ*) 

respectively.  
If IDA

*≠IDf, Ω aborts. Otherwise, Ω can compute abP=KA
*−α*P1−β*PA

*−γ* RA
*. 

(2) If the output is a valid tuple (m*,mw
*,IDA

*,PA
*,IDB

*,PB
*,σ*=(RA

*,RB
*,V*)) satisfying Case 2 as defined in 

Section 3, Ω first checks L-list, H2-list, H3-list and H4-list to find (IDA
*,QA

*,DA
*,αA

*,xA
*,PA

*), (IDB
*,QB

*,DB
*,αB

*, 
xB

*,PB
*), (IDA

*,PA
*,βA

*,TA
*), (IDB

*,PB
*,βB

*,TB
*), (mw

*,IDA
*,PA

*,RA
*,UA

*, γ *) and (m*,mw
*,IDB

*,PB
*,RB

*,UB
*,h*) 

respectively.  
If IDA

*≠IDf, Ω aborts. Otherwise, Ω can compute abP = V*−αA
*P1−βA

*PA
*−γ*RA

*−αB
*P1−βB

*PB
*−h*RB

*. 
(3) If the output is a valid tuple (m*,mw

*,IDA
*,PA

*,IDB
*,PB

*,σ*=(RA
*,RB

*,V*)) satisfying Case 3 as defined in 
Section 3, Ω first checks L-list, H2-list, H3-list and H4-list to find (IDA

*,QA
*,DA

*,αA
*, xA

*,PA
*),(IDB

*,QB
*,DB

*,αB
*, 

xB
*,PB

*),(IDA
*,PA

*,βA
*,TA

*),(IDB
*,PB

*,βB
*,TB

*),(mw
*,IDA

*,PA
*,RA

*,UA
*, γ *) and (m*,mw

*,IDB
*,PB

*,RB
*,UB

*,h*) 
respectively.  

If IDB
*≠IDf, Ω aborts. Otherwise, Ω can compute abP=V*−αA

*P1−βA
*PA

*−γ*RA
*−αB

*P1−βB
*PB

*−h*RB
*. 

Probability of success: We show that Ω solves the given instance of CDH problem with the probability 
1 2

, ( )G G
CDHSucc −

Ω . To do so, we analyze the three events that result in Ω’s success. 
 E1: Ω does not abort in all the queries of Partial-Private-Key and Proxy-Key.  

E2: AI can forge a valid partial proxy key or proxy signature. 
E3: After Event 2 occurs, one of the following events happens. 
(1) AI outputs a valid tuple (mw

*, IDA
*, PA

*, RA
*, KA

*) satisfying IDA
*=IDf. 

(2) AI outputs a valid tuple (m*, mw
*, IDA

*, PA
*, IDB

*, PB
*, RA

*, RB
*, V*) satisfying IDA

*=IDf. 
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(3) AI outputs a valid tuple (m*, mw
*, IDA

*, PA
*, IDB

*, PB
*, RA

*, RB
*, V*) satisfying IDB

*=IDf. 

The probability that Ω solves the given CDH problem is Pr(E1∩E2∩E3) =Pr(E1)Pr(E2|E1) Pr(E3| E2∩E1). 

We have Pr(E1)≥
1(1 ) PPK ProKq q

CUq +−− , Pr(E2|E1) ≥
,
, ( )

I

cma cida
CLPS ASucc  and Pr(E3|E2∩E1) ≥

1
CUq− .  

Hence, 1 2
, ( )G G

CDHSucc −

Ω =Pr(E1∩E2∩E3) ≥
1 1 ,

,(1 ) ( )PPK ProK

I

q q cma cida
CU CU CLPS Aq q Succ+− −− .  

In summary, if AI succeeds within a time span t for a security parameter , then the CDH problem in G1 can be 

solved by Ω within a time span t′ ≤ t + qCU tCU  + qPPK tPPK + qPKR tPKR + qSV tSV + qH2tH2 + qH3tH3+ qH4tH4+ qPProK 

tPProK + qProK tProK + qPS tPS and with the success probability 1 2
, ( )G G

CDHSucc −

Ω ≥ 1 1 ,
,(1 ) ( )PPK ProK

I

q q cma cida
CU CU CLPS Aq q Succ+− −− . 

Theorem 2. In the random oracle model, if AII is a super type II adaptively chosen message and chosen 

identity attacker against our CLPS scheme with the success probability ,
, ( )

II

cma cida
CLPS ASucc  within a time span t and after 

asking at most qCU Create-user queries, qPKR Public-Key- Replacement queries, qSV Secret-Value queries, qH2 H2 

queries, qH3 H3 queries, qH4 H4 queries, qPProK Partial-Proxy-Key queries, qProK Proxy-Key queries and qPS Proxy- 

Sign queries, then there exists an algorithm Ω which can use AII to solve a random instance of the CDH problem in 

G1 within time t′ ≤ t + qCU tCU + qPKR tPKR + qSV tSV + qH2tH2 + qH3tH3+ qH4tH4+ qPProK tPProK + qProK tProK + qPS tPS and 

with the success probability 1 2
, ( )G G

CDHSucc Ω
−

≥ 1 1(1 ) SV ProKq q
CU CUq q +− −−

,
, ( )

II

cma cida
CLPS ASucc , where tCU (resp. tPKR, tSV, tH2, tH3, 

tH4, tPProK, tProK and tPS) is the time cost of a Create-user (resp. Public-Key-Replacement, Secret-Value, H2, H3, H4, 

Partial-Proxy-Key, Proxy-Key and Proxy- Sign) query.  
Proof:  Given a random instance (P, P1=aP, P2=bP) of the CDH problem in G1, we show how Ω can obtain 

the value of abP with the help of the AII. In the proof, we regard the hash functions H2, H3, H4 as the random 
oracles. We assume that AII doesn’t repeat any two identical queries. 

Setup: In the game, Ω selects a random s∈Zq
*, set P0= sP and the system parameters param = (G1, G2, e, q, P, 

P0, H1, H2, H3, H4). Ω returns param and the master-key s to AII. 
Attack: AII can ask Ω Create-User, Public-Key-Replacement, Secret-Value, H2, H3, H4, Partial-Proxy-Key, 

Proxy-Key and Proxy-Sign queries. In order to maintain consistency and avoid conflict, Ω keeps four lists L, H2, 
H3, H4 to store the used answers, where L-list includes items of the form (IDi, Di, xi, Pi), H2-list includes items of the 
form (IDi, Pi, βi, Ti), H3-list includes items of the form (mw

i, IDA
i, PA

i, RA
i, UA

i,γi), H4-list includes items of the 
form (mi, mw

i, IDB
i, PB

i, RB
i, UB

i, hi). All of these lists are initially empty. 

• Create-User oracle: Ω first picks a random f∈{1,2,…,qCU}. Upon receiving AII’s query CU (IDi), Ω picks 

random xi∈Zq
*. If i≠f, Ω sets Di=sH1(IDi), Pi= xiP. If i=f, Ω sets Df= sH1(IDf), Pf=xfP +P1. Finally, Ω adds (IDi, Di, 

xi, Pi) into the L-list and returns Pi to AII as answer. 

• Public-Key-Replacement queries: On receiving a query PKR(IDi, Pi'), Ω checks the L-list and updates the 

tuple (IDi, Di, xi, Pi) as (IDi, Di,⊥, Pi'). 

• Secret-Value oracle: On receiving a query SV(IDi), Ω first checks the L-list. If i=f, Ω aborts. Otherwise, if xi≠

⊥, Ω returns xi as answer; if xi=⊥, Ω returns⊥as answer. 

• H2 Queries: On receiving AII’s query H2(IDi||Pi), Ω first picks a randomβi∈Zq
* such that there is no item 

(*,*,βi, *) in the H2-list. If i=f, Ω sets Tf=βfP+P2. Otherwise, Ω sets T=βiP. Then Ω adds (IDi, Pi,βi, Ti) into the 

H2-list and returns Ti to AII as answer. 
• H3 Queries: On receiving AII’s query H3(mw

i||IDA
i||PA

i||RA
i), Ω first picks a randomγi∈Zq

* such that there is 
no item (*,*,*,*,*,γi) in the H3-list and sets UA

i=γiP. Then Ω adds (mw
i, IDA

i, PA
i, RA

i, UA
i,γi) into the H3-list and 

returns UA
i to AII as answer. 

• H4 Queries: On receiving AII’s query H4 (mi||mw
i||IDB

i||PB
i||RB

i), Ω first picks a random hi∈Zq
* such that there 

is no item (*,*,*,*,*,*,hi) in the H4-list and sets UB
i=hiP. Then Ω adds (mi, mw

i, IDB
i, PB

i, RB
i,UB

i, hi) into the H4-list 
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and returns UB
i to AII as answer. 

• Partial-Proxy-Key oracle: Upon receiving a query PProK(mw
i, IDA

i
 ), Ω first checks the L-list to get the 

current public key of the IDA
i. Then Ω makes H2(IDA

i ||PA
i) to obtain (IDA

i, PA
i, βi, TA

i) and executes the following 
steps: 

(1) Randomly pick ai, bi∈Zq
*. 

(2) Set RA
i=biPA

i, UA
i= H3(mw

i||IDA
i||PA

i||RA
i)=bi

−1(aiP−TA
i), and KA

i=aiPA
i+DA

i. 
If there is the tuple (mw

i, IDA
i, PA

i, RA
i) in the H3-list, Ω updates bi in order to avoid this conflict. Ω returns (RA

i, KA
i) 

to AII as answer and adds (mw
i, IDA

i, PA
i, RA

i, UA
i,⊥) into the H3-list. 

• Proxy-Key oracle: Upon receiving a query ProK( mw
i, IDA

i, IDB
i), Ω checks the L -list to obtain (IDB

i, DB
i, xB

i, 
PB

i). If the public key of IDB
i has been replaced, Ω returns ⊥. Otherwise, Ω first performs PProK(mw

i,IDA
i
 ), 

H2(IDB
i||PB

i) to obtain the tuples (RA
i,KA

i) and (IDB
i,PB

i, βB
i,TB

i) respectively. 
If IDB

i= IDf, Ω aborts. Otherwise, Ω sets SB
i= DB

i+xB
iTB

i and returns (KA
i, SB

i) to AII as answer 
• Proxy-Sign oracle: Upon receiving a query PS(mi, mw

i, IDA
i, IDB

i), Ω first checks the L-list to get the current 
public keys of the IDA

i and IDB
i. Then Ω makes H2(IDA

i ||PA
i) and H2(IDB

i ||PB
i) to obtain (IDA

i, PA
i, βA

i, TA
i) and 

(IDB
i, PB

i, βB
i, TB

i) respectively and executes the following steps:  
(1) Randomly pick ai, bi, ci, di∈Zq

*. 
(2) Set RA

i=biPA
i, UA

i= H3(mw
i||IDA

i||PA
i||RA

i)=bi
−1(aiP−TA

i), and KA
i=aiPA

i+DA
i. 

(3) Set RB
i= diPB

i, UB
i= H4(mi||mw

i||IDA
i||PA

i||RA
i)=di

−1(ciP−TB
i), and Vi= KA

i +ciPB
i +DB

i. 
If there is a tuple (mw

i, IDA
i, PA

i, RA
i) or (mi, mw

i, IDA
i, PA

i, RA
i) in the H3-list or H4-list, Ω updates ai or ci in order to 

avoid conflict. Ω returns (RA
i, RB

i, Vi) to AII as answer and adds (mw
i, IDA

i, PA
i, RA

i,UA
i,⊥) and (mi, mw

i, IDB
i, PB

i, RB
i, 

UB
i,⊥) into the H3-list and H4-list respectively. 

Forgery: AII outputs a tuple (mw
*,IDA

*,PA
*,ΘA

*=(RA
*,KA

*)) or (m*,mw
*,IDA

*,PA
*,IDB

*,PB
*,σ*=(RA

*,RB
*,V*)). 

(1) If the output is a valid tuple (mw
*,IDA

*,PA
*,ΘA

*=(RA
*,KA

*)) satisfying Case 1 as defined in Section 3, Ω first 
checks L-list, H2-list and H3-list to find (IDA

*,DA
*,xA

*,PA
*),(IDA

*,PA
*, β *,TA

*),(mw
*,IDA

*,PA
*,RA

*,UA
*, γ *) 

respectively.  
If IDA

*≠IDf, Ω aborts. Otherwise, Ω can compute abP=KA
*−Df −xfP2−βfPf−γ*RA

*.  
(2) If the output is a valid tuple (m*, mw

*, IDA
*, PA

*, IDB
*, PB

*,σ*=(RA
*, RB

*,V*)) satisfying Case 2 as defined in 
Section 3, Ω first checks L-list, H2-list, H3-list and H4-list to find (IDA

*, DA
*, xA

*, PA
*), (IDB

*, DB
*, xB

*, PB
*), (IDA

*, 
PA

*,βA
*, TA

*), (IDB
*, PB

*,βB
*, TB

*), (mw
*, IDA

*, PA
*, RA

*,UA
*,γ*) and (m*, mw

*, IDB
*, PB

*, RB
*,UB

*, h*) respectively.  
If IDA

*≠IDf, Ω aborts. Otherwise, Ω can compute abP=V*−Df−xfP2−βfPf−γ*RA
*−DB

*−βB
*PB

*−h*RB
*. 

(3) If the output is a valid tuple (m*, mw
*, IDA

*, PA
*, IDB

*, PB
*,σ*=(RA

*,RB
*,V*)) satisfying Case 3 as defined in 

Section 3, Ω first checks L-list, H2-list, H3-list and H4-list to find (IDA
*, DA

*, xA
*, PA

*),(IDB
*, DB

*, xB
*, PB

*),(IDA
*, 

PA
*,βA

*, TA
*), (IDB

*, PB
*,βB

*, TB
*), (mw

*, IDA
*, PA

*, RA
*,UA

*,γ*) and (m*, mw
*, IDB

*, PB
*, RB

*,UB
*, h*) respectively. 

If IDB
*≠IDf, Ω aborts. Otherwise, Ω can compute abP=V*−Df−xfP2−βfPf−h*RB

*−DA
*−βA

*PA
*−γ*RA

*. 

Probability of success: With the similar method as in Theorem 1, we have the following conclusion: If AII 

succeeds within a time span t for a security parameter , then the CDH problem in G1 can be solved by Ω within a 

time span t′ ≤ t + qCU tCU  + qPKR tPKR + qSV tSV + qH2tH2 + qH3tH3+ qH4tH4+ qPProK tPProK + qProK tProK + qPS tPS and with 

the success probability 1 2
, ( )G G

CDHSucc −

Ω ≥ 1 1(1 ) SV ProKq q
CU CUq q +− −−

,
, ( )

II

cma cida
CLPS ASucc . 

According to the above theorems, we can conclude that an original signer and other third parties who are not 
designated as proxy signers cannot create a valid proxy signature. Thus our scheme enjoys strong unforgeability. In 
addition, our scheme also enjoys the security requirements of proxy signatures such as verifiability, prevention of 
misuse, strong undeniability, strong identifiability, etc. Due to page limitation, we will not describe them here. 
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5.3   Efficiency 

In comparing our scheme with Lu, et al.’s scheme[10] in detail, we only consider the costly operations including 
the bilinear pairing operation (BP), scalar multiplication in G1 (SM), exponentiation in G2 (E) and hash operation 
(H). In both schemes, e(P, P), e(YID, QID), e(YID, (H2(mw,U)QID+U)), e(QID, P0), e(TID, PID), e(UID, RID), H1(ID), 
H2(ID||PID) and H3(mw||ID ||PID||RID) can be pre-computed in the proxy signature verification phase, so they are not 
counted into the operation cost in the table below. We use |*| to denote the bit length of *. The table shows that our 
scheme has much less operations cost than the scheme in Ref.[10]. Therefore, our scheme is more efficient. 

Table 1  Efficiency comparison 

Schemes PPro-K-Gen PPro-K-Ver Pro-Sign Pro-Ver Provable security 

Scheme in Ref.[10] 2SM+1H 4BP+1SM+1H 2SM+1E+1H 5BP+3E+1H No formal proof provided 

Our scheme 1SM+1H 2BP+1H 2SM+1H 2BP+2H Yes 

6   Conclusion  

In this paper, we have presented an appropriate security model as well as a concrete construction of 
certificateless proxy signature scheme. Our security model takes into account the strongest adversaries in 
certificateless public key settings. Without pairing operation in proxy signature phase and with two pairing 
operations in proxy signature verification phase, our scheme is efficient. It enjoys all the security requirements of 
proxy signatures. The security of our scheme is proved in the random model with the intractability of the 
Computational Diffie-Hellman problem. Due to its efficiency and certificateless, it can be widely used in areas such 
as electronic commerce, mobile agent systems, etc. 
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