

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.20, No.3, March 2009, pp.692−701 http://www.jos.org.cn
doi: 10.3724/SP.J.1001.2009.00574 Tel/Fax: +86-10-62562563
© by Institute of Software, the Chinese Academy of Sciences. All rights reserved.

可证安全的无证书代理签名方案
∗

陈 虎+, 张福泰, 宋如顺

(南京师范大学 数学与计算机科学学院,江苏 南京 210097)

Certificateless Proxy Signature Scheme with Provable Security

CHEN Hu+, ZHANG Fu-Tai, SONG Ru-Shun

(School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China)

+ Corresponding author: E-mail: chenhuchh@163.com

Chen H, Zhang FT, Song RS. Certificateless proxy signature scheme with provable security. Journal of
Software, 2009,20(3):692−701. http://www.jos.org.cn/1000-9825/574.htm

Abstract: This paper studies proxy signatures in the newly proposed certificateless public key setting. The authors
present a very strong security model for certificateless proxy signature schemes against both Super Type I
Adversary and Super Type II Adversary. And also an efficient construction of certificateless proxy signature scheme
using bilinear maps is put forward. The security of this scheme is based on the infeasibility of the Computational
Diffie-Hellman problem and is formally proven under the security model of certificateless proxy signature schemes.
Due to its security, high efficiency and freedom from certificate management, it may have practical applications in
electronic commerce and mobile agent systems, etc.
Key words: certificateless cryptography; bilinear map; computational Diffie-Hellman problem; proxy signature;
 random Oracle

摘 要: 研究在新提出的无证书公钥密码系统下的代理签名问题,给出了无证书代理签名方案非常强的安全

模型.该安全模型下的攻击者是能力最强的超级类型 I 和类型 II 攻击者.同时,利用双线性映射设计了一个高效

的无证书代理签名方案.其安全性基于计算 Diffie-Hellman 问题的困难性,并在此安全模型下给出正式的安全证

明. 鉴于方案的安全、高效和无证书管理的优点,它可广泛应用于电子商务、移动代理系统等方面.
关键词: 无证书密码系统;双线性映射;计算 Diffie-Hellman 问题;代理签名;随机预言器
中图法分类号: TP309 文献标识码: A

1 Introduction

The concept of proxy signature was first introduced by Mambo, Usuda and Okamoto[1] in 1996. In a proxy
signature scheme, one user A, called original signer, delegates his signing capability to another user B, called proxy
signer. Upon receiving a proxy signature on some message, a verifier can check its correctness according to a given

∗ Supported by the National Natural Science Foundation of China under Grant No.60673070 (国家自然科学基金); the Natural

Science Foundation of Jiangsu Province of China under Grant No.BK2006217 (江苏省自然科学基金)
Received 2008-05-13; Accepted 2008-10-27

陈虎 等:可证安全的无证书代理签名方案 693

verification procedure, and further be convinced of the original signer’s agreement on the signed message. For a
secure proxy signature scheme, the following requirements must be satisfied: correctness, strong unforgeability,
verifiability, prevention of misuse, strong undeniability and strong identifiability. Proxy signatures have found lots
of practical applications in areas such as electronic commerce, global distribution networks, and mobile agent
systems, etc. To adapt to different situations, many variants of proxy signature scheme are studied, such as threshold
proxy signature[2], proxy multi-signature[3], Designated Verifier Proxy Signature[4], ID-based proxy signature[5] and
so on. We notice that almost all proxy signature schemes available in the literature are based on the traditional
public key cryptography (TPKC) or the identity-based cryptography (IBC). And it is widely known that the TPKC
requires heavy cost on certificate management while IBC suffers from the key escrow problem.

In 2003, Al-Riyami and Paterson[6] introduced an intermediate model between TPKC and IBC, known as
certificateless public key cryptography (CL-PKC). Having no certificates that are essential in TPKC, CL-PKC
achieves implicit certification without suffering from the inherent key escrow problem in IBC. Therefore, CL-PKC
still keeps the advantages enjoyed by TPKC and IBC. Since the appearance of CL-PKC, it has attracted the attention
of many researchers and there have been several interesting works on certificateless signature schemes[7−10]. The
advantages of certificateless cryptography and the distinguished characteristics of proxy signature schemes make it
very interesting to construct secure and efficient certificateless proxy signature (CLPS) schemes. In 2005, Li, et al.[9]
proposed the first certificateless proxy signature scheme without any formal security proof. Unfortunately, their
scheme was found insecure. Recently, Lu, et al.[10] and Yap, et al.[11] respectively pointed out its security flaws. To
the best of our knowledge, no appropriate security model and secure CLPS scheme are available in the literature.

We investigate the appropriate security model and the construction of secure CLPS scheme in this paper. We
introduce a security model of certificateless proxy signature schemes. In the security model, the adversaries are
Super Type I Adversaries and Super Type II Adversaries[7] with the strongest attack power. At the same time, a
provably secure CLPS scheme in the given security model is put forward. Our scheme meets only two pairing
operations in the proxy signing and verification processes and enjoys all the security requirements for proxy
signatures. We provide formal security proofs for our scheme under the assumption that the Computational
Diffie-Hellman problem is intractable.

In the next section, we show some preliminaries and the background knowledge required throughout the
paper. In Section 3, we introduce the security model of the CLPS schemes. In Section 4, we present our concrete
CLPS scheme. Its security and efficiency analysis are given in Section 5. Section 6 concludes this paper.

2 Preliminaries

2.1 Bilinear maps and computational problem

Let G1 denote an additive group of prime order q and G2 be a multiplicative group of the same order. Let P
denote a generator of G1. A map e: G1×G1→G2 is called a bilinear map, if it has the following properties:

1. Bilinear: e(aP, bQ)= e(P, Q)ab for P, Q∈G1, a, b∈Zq
*.

2. Non-Degeneracy: There exists P, Q∈G1 such that e(P, Q)≠1G2.
3. Computable: There exists an efficient algorithm to compute e (P, Q) for any P, Q∈G1.
Computational Diffie-Hellman (CDH) Problem.
Given a randomly chosen P∈G1, as well as aP, bP (for unknown a, b∈Zq

*), to compute abP.

2.2 The concept of CLPS

A certificateless proxy signature scheme involves an original signer and a proxy signer. It consists of ten

694 Journal of Software 软件学报 Vol.20, No.3, March 2009

algorithms: Setup, Partial-Private-key-Extract, Set-Secret-Value, Set-Public-Key, Set-Private-Key, Partial-
Proxy-Key-Generate, Partial-Proxy-Key-Verify, Set-Proxy-Key, Proxy-Sign and Proxy-Verify. The formal
definitions of the first five algorithms are the same as those in a certificateless signature scheme. Readers can refer
to Ref.[6] for details. The others are formally defined as follows:

Partial-Proxy-Key-Generate: An algorithm which takes as input a parameter list param, a warrant mw, an
original signer’s public/private key and identity to generate a partial proxy key. This algorithm is run by the original
signer.

Partial-Proxy-Key-Verify: An algorithm which accepts a parameter list param, a warrant mw, an identity and
public key of an original signer, and a partial proxy key to returns True if the partial proxy key is correct, or False
otherwise. This algorithm is run by a proxy signer.

Set-Proxy-Key: An algorithm which accepts a parameter list param, a partial proxy key, and a proxy signer’s
private key to output a proxy key. This algorithm is run by a proxy signer.

Proxy-Sign: An algorithm which accepts a parameter list param, a warrant mw, a message m, an identity and
public key of the original signer, an identity and public key of the proxy signer, and a proxy key to generate a proxy
signature σ on message m. This algorithm is run by a proxy signer.

Proxy-Verify: An algorithm which accepts a parameter list param, a message m, a warrant mw, a proxy
signature σ, an original signer’s identity and public key, and a proxy signer’s identity and public key to return
True if the signature is correct , or False otherwise.

3 Security Model of CLPS

Similar to the adversaries against certificateless signature scheme defined in Ref.[7], for the security of
certificateless proxy signature schemes we consider two types of adversaries, namely Super Type I Adversary, Super
Type II Adversary with different capabilities in CLPS schemes.

Super Type I Adversary: A Type I Adversary AI does not have access to the master-key, but AI has the ability
to replace the public key of any entity with a value of his choice.

Super Type II Adversary: A Type II Adversary AII has access to the master-key but cannot replace the target
user’s public key.

Informally speaking, a secure CLPS scheme should prevent an adversary from producing any valid new
message-proxy signature pair without the knowledge of the private proxy key of the proxy signer even if he has
already gotten many valid message-proxy signature pairs.

To formally define the security of CLPS schemes, we demonstrate a game played between a challenger Ω and
an adversaryΓ∈{AI, AII}.

Setup: Ω runs the Setup algorithm of the CLPS scheme, takes as input a security parameter to obtain a
master-key and the system parameter lists param. Ω then sends param to the adversary Γ. If Γ is a AII, Ω also
sends the master-key toΓ. Note that is a security parameter throughout the paper.

Attack: The adversaryΓ can get access to the following oracles (as well as the random oracles if there exists),
which are controlled by Ω.

• Create-User oracle: This algorithm takes as input an identity ID. If ID has already been created, nothing is to
be done by this algorithm. Otherwise, it runs the algorithms Partial-Private-key-Extract, Set-Secret-Value, Set
-Public-Key to obtain the partial private key DID, secret value xID and public key PID. Then it adds (ID, DID, xID, PID)
to the list L. In this case, ID is said to be created. In both cases, PID is returned.

• Partial-Private-Key oracle: (For AI only) On input an identity ID, which has been created, the oracle browses

陈虎 等:可证安全的无证书代理签名方案 695

the list L and returns the partial private key DID corresponding to the ID as answer.

• Public-Key-Replacement oracle: Taking as input an identity ID and a new public key IDP′ , where ID denotes

the created identity, the oracle replaces the public key of the given identity ID with the new one and updates the

corresponding information in the list L.

• Secret-Value oracle: Accepting a created identity ID, the oracle browses the list L and returns the secret value

xID as answer. Note that, the secret value output by this oracle is the one which is used to generate ID’s original

public key PID. In addition, it doesn’t output the secret value associated with the replaced public key IDP′ .
• Partial-Proxy-Key oracle: On input an original signer’s identity IDA and a warrant mw, the oracle outputs a

partial proxy keyΘA as answer.
• Proxy-Key oracle: Accepting an original signer’s identity IDA, a proxy signer’s identity IDB, and a warrant mw,

the oracle outputs a proxy key for the proxy signer as answer.
• Proxy-Sign oracle: On input a message m, a warrant mw, an original signer’s identity IDA, a proxy signer’s

identity IDB, the oracle outputs a proxy signature σ as answer.

Forgery: Finally,Γ outputs a tuple (mw
*, IDA

*, PA
*,ΘA

) or (m, mw
*, IDA

*, PA
*, IDB

*, PB
,σ) as its forgery.

We sayΓ wins the game, if one of the following conditions is satisfied:

case1: Γ outputs a tuple (mw
*, IDA

*, PA
*,ΘA

*) satisfying:

(1) True ←Verify(param, mw
*, IDA

*, PA
*,ΘA

*);

(2) IfΓ is AI, IDA
* has never been made Partial-Private-Key query. IfΓ is AII, IDA

* has never been

made Secret-Value query;

(3) (mw
*, IDA

*, PA
*) has never been made Partial-Proxy-Key query.

case2: Γ outputs a tuple (m*, mw
*, IDA

*, PA
*, IDB

*, PB
,σ) satisfying:

(1) True ←Verify(param, m*, mw
*, IDA

*, PA
*, IDB

*, PB
,σ);

(2) IfΓ is AI, IDA
* has never been made Partial-Private-Key query. IfΓ is AII, IDA

* has never been

made Secret-Value query;

(3) (mw
*, IDA

*, PA
*) has never been made Partial-Proxy-Key query;

(4) (mw
*, IDA

*, PA
*, IDB

*, PB
*) has never been made Proxy-Key query;

(5) (m*, mw
*, IDA

*, PA
*, IDB

*, PB
*) has never been made the Proxy-Sign query.

case3: Γ outputs a tuple (m*, mw
*, IDA

*, PA
*, IDB

*, PB
,σ) satisfying:

(1) True ←Verify(param, m*, mw
*, IDA

*, PA
*, IDB

*, PB
,σ);

(2) IfΓ is AI, IDB
* has never been made Partial-Private-Key query. IfΓ is AII, IDB

* has never been

made Secret-Value query;

(3) (mw
*, IDA

*, PA
*, IDB

*, PB
*) has never been made Proxy-Key query;

(4) (m*, mw
*, IDA

*, PA
*, IDB

*, PB
*) has never been made the Proxy-Sign query.

The success probability of an adversary to win the game is denoted by ,
,

cma cida
CLPSSucc Γ ε≤（ ） .

Definition. A certificateless proxy signature scheme is existentially unforgeable against adaptively chosen

message and chosen identity attack if the success probability of any polynomially bounded adversary in the above

game is negligible. In other words, ,
,

cma cida
CLPSSucc Γ ε≤（ ） ,whereεis negligible.

4 Our CLPS Scheme

We use some ideas of the certificateless signature scheme in Ref.[8]. It consists of the following algorithms:

696 Journal of Software 软件学报 Vol.20, No.3, March 2009

Setup: IG is a bilinear map instance generator. This algorithm runs as follows.
1. Run IG on input to generate output (G1, G2, e), where e: G1×G1→G2 is bilinear map.
2. Choose a random generator P∈G1.
3. Choose a random master-key s∈RZq

* and set P0=sP.
4. Choose cryptographic hash functions H1, H2, H3, H4: {0,1}*→G1

*.
The system parameters param = (G1, G2, e, q, P, P0, H1, H2, H3, H4). The message space is M= {0, 1}*.
Partial-Private-Key-Extract: This algorithm accepts a user’s identity IDi∈{0,1}* and computes Qi=H1 (IDi)

to output the partial private key Di=sQi.
Set-Secret-Value: This algorithm takes as input param and a user’s identity IDi, and selects a random xi∈RZq

*
and outputs xi as the user’s secret value.

Set-Public-Key: This algorithm accepts param and a user’s secret value xi to produce the user’s public key Pi=
xiP.

Set-Private-Key: This algorithm takes as input param, a user’s partial private key Di, secret value xi, public
key Pi, and identity IDi. The output of the algorithm is the private key Si=Di+xiTi, where Ti=H2(IDi|| Pi).

Partial-Proxy-Key-Generate: On input param, a private key SA and a warrant mw, the original signer A with
the identity IDA and the public key PA computes partial proxy key for the proxy signer B.

1. Randomly pick rA∈RZq
*and compute RA=rAP.

2. Compute UA = H3 (mw|| IDA|| PA|| RA) and KA=SA+rAUA.
3. Output (mw, RA, KA) to B and take ΘA=(RA, KA) as the partial proxy key.
Note that a warrant mw specifies the delegation relation, the delegation period, what kind of the messages can

be delegated, etc.
Partial-Proxy-Key-Verify: Upon receiving (mw, RA, KA), the proxy signer B checks whether e(KA, P) = e(QA,

P0)e(TA, PA) e(UA, RA) holds. If it does, accept (mw, RA, KA). Otherwise, reject it.
Set-Proxy-Key: If the proxy signer B with the private keySB accepts(mw, RA, KA), B sets its proxy key as (RA,

KA, SB).
Proxy-Sign: To sign a message m, the proxy signer B with identity IDB, public key PB and proxy key (RA, KA,

SB) performs the following steps:
1. Randomly pick rB∈RZq

*and compute RB= rBP.
2. Compute UB=H4(m||mw|| IDB|| PB|| RB) and V= KA +SB + rB UB .
3. Outputσ=(RA, RB, V) as the proxy signature.

Proxy-Verify: To verify (m, mw,σ) with the original signer’s identity IDA and public key PA, the proxy signer’s
identity IDB and public key PB , a verifier executes the following steps;

1. Check whether or not the message m conforms to mw. If not, rejectσ; otherwise, continue.
2. Compute QA=H1 (IDA), QB=H1 (IDB), TA=H2(IDA||PA), TB=H2(IDB||PB), UA = H3 (mw||IDA|| PA|| RA), and UB

= H4 (m||mw|| IDB|| PB|| RB).
3. Check whether or not the equation e(V, P)= e(QA+QB, P0) e(TA, PA) e(TB, PB) e(UA, RA) e(UB, RB) holds. If it

does, acceptσ. Otherwise, rejectσ.

5 Security and Efficiency Analysis

5.1 Correctness

The correctness of the proposed scheme can be easily verified.
e(V, P) = e(KA +SB + rB UB, P)

陈虎 等:可证安全的无证书代理签名方案 697

= e(SA + rA UA, P) e(SB, P) e(UB, RB)
= e(DA + xATA, P) e(DB + xBTB, P) e(UA, RA) e(UB, RB)
= e(QA + QB, P0) e(TA, PA) e(TB, PB) e(UA, RA) e(UB, RB).

5.2 Strong unforgeability
Assuming that the CDH problem is hard, we prove the unforgeability of our CLPS scheme.

Theorem 1. In the random oracle model, if AI is a super type I adaptively chosen message and chosen identity

attacker against our CLPS scheme with the success probability ,
, ()cma cida

CLPS AI
Succ within a time span t and after asking

at most qCU Create-user queries, qPPK Partial-Private-Key queries, qPKR Public-Key-Replacement queries, qSV

Secret-Value queries, qH2 H2 queries, qH3 H3 queries, qH4 H4 queries, qPProK Partial-Proxy-Key queries, qProK

Proxy-Key queries and qPS Proxy-Sign queries, then there exists an algorithm Ω which can use AI to solve a random

instance of the CDH problem in G1 within time t′ ≤ t + qCU tCU + qPPK tPPK + qPKR tPKR + qSV tSV + qH2tH2 + qH3tH3+

qH4tH4 +qPProK tPProK +qProK tProK +qPS tPS and with the success probability 1 2
, ()G G

CDHSucc −

Ω ≥ 1 1 ,
,(1) ()PPK ProKq q cma cida

CU CU CLPS AI
q q Succ+− −− ,

where tCU (resp. tPPK, tPKR, tSV, tH2, tH3, tH4, tPProK, tProK and tPS) is the time cost of a Create-user (resp. Partial-Private

-Key, Public-Key-Replacement, Secret-Value, H2, H3, H4, Partial-Proxy-Key, Proxy-Key and Proxy-Sign) query.
Proof: Given a random instance (P, P1=aP, P2=bP) of the CDH problem in G1, we show how Ω can obtain

the value of abP with the help of the AI. In the proof, we regard the hash functions H1, H2, H3, H4 as the random
oracles. We assume that AI doesn’t repeat any two identical queries.

Setup: In this game, Ω sets P0=P1=aP and the system parameters param = (G1, G2, e, q, P, P0, H1, H2, H3, H4).
Ω returns param to AI.

Attack: AI can ask Ω Create-User, Partial-Private-Key, public-key-Replacement, Secret-Value, H2, H3, H4,
Partial-Proxy-Key, Proxy-Key and Proxy-Sign queries. In order to maintain consistency and avoid conflict, Ω
keeps four lists L, H2, H3, H4 to store the used answers, where L-list (resp. H2-list, H3-list, H4-list) includes items of
the form (IDi, Qi, Di,αi, xi, Pi) (resp. (IDi, Pi,βi, Ti), (mw

i, IDA
i, PA

i, RA
i, UA

i,γi), (mi, mw
i, IDB

i, PB
i, RB

i, UB
i, hi)). All

of these lists are initially empty.
• Create-User oracle: Ω first picks a random f∈{1,2,…,qCU}. Upon receiving AI’s query CU (IDi), Ω picks

random xi,αi∈Zq
* such that there is no item (*,*,*,αi,*,*) in the L-list. If i≠f, Ω sets Qi=αiP, Di=αiP0, Pi=xiP. If i=f,

Ω sets Qf=xfP +P2, Df=⊥, Pf= xfP. Finally, Ω adds (IDi, Qi, Di, αi, xi, Pi) into the L-list and returns Pi to AI as
answer.

• Partial-Private-Key queries: Whenever Ω receives a query PPK(IDi), Ω first checks the L-list. If i≠f, Ω
returns Di as answer. If i=f, Ω aborts.

• Public-Key-Replacement queries: Accepting a query PKR(IDi,Pi'), Ω checks the L-list and updates the tuple
(IDi, Qi, Di, αi, xi, Pi) as (IDi, Qi, Di, αi,⊥, Pi').

• Secret-Value oracle: On receiving a query SV(IDi), Ω first checks the L-list. If xi≠⊥, Ω returns xi as answer.
Otherwise, Ω returns ⊥ as answer.

• H2 Queries: On receiving AI’s query H2(IDi || Pi), Ω first picks a randomβi ∈ Zq
* such that there is no item (*,

,βi,) in the H2-list, sets Ti=βiP. Then Ω adds (IDi, Pi, βi, Ti) into the H2-list and returns Ti to AI as answer.
• H3 Queries: On receiving AI’s query H3(mw

i||IDA
i||PA

i||RA
i), Ω first picks a randomγi∈Zq

* such that there is no
item (*,*,*,*,*,γi) in the H3-list and sets UA

i=γiP. Then Ω adds (mw
i, IDA

i, PA
i, RA

i, UA
i,γi) into the H3-list and

returns UA
i to AI as answer.

• H4 Queries: On receiving AI’s query H4 (mi||mw
i||IDB

i||PB
i||RB

i), Ω first picks a random hi∈Zq
* such that there is

no item (*,*,*,*,*,*,hi) in the H4-list and sets UB
i=hiP. Then Ω adds (mi, mw

i, IDB
i, PB

i, RB
i,UB

i, hi) into the H4-list
and returns UB

i to AI as answer.

698 Journal of Software 软件学报 Vol.20, No.3, March 2009

• Partial-Proxy-Key oracle: Upon receiving a query PProK(mw
i, IDA

i
), Ω first checks the L-list to get the

current public key of the IDA
i. Then Ω makes H2(IDA

i ||PA
i) to obtain (IDA

i, PA
i,βi, TA

i) and executes the following
steps:

(1) Randomly pick ai, bi∈Zq
*.

(2) Set RA
i= aiP1, UA

i= H3(mw
i||IDA

i||PA
i||RA

i)=ai
−1(biP−QA

i), and KA
i=biP1+βiPA

i.
If there is a tuple (mw

i, IDA
i, PA

i, RA
i) in the H3-list, Ω updates ai in order to avoid conflict. Ω returns (RA

i, KA
i)

to AI as answer and adds (mw
i, IDA

i, PA
i, RA

i,UA
i,⊥) into the H3-list.

• Proxy-Key oracle: Upon receiving a query ProK(mw
i, IDA

i, IDB
i), Ω checks the L-list to obtain (IDB

i, QB
i,

DB
i,αB

i, xB
i, PB

i). If the public key of IDB
i has been replaced, Ω returns ⊥. Otherwise, Ω first performs PProK(mw

i,
IDA

i
), H2(IDB

i||PB
i)to obtain the tuples (RA

i, KA
i) and (IDB

i, PB
i,βB

i, TB
i) respectively.

If IDB
i= IDf, Ω aborts. Otherwise, Ω sets SB

i=DB
i+xB

iTB
i and returns (KA

i, SB
i) to AI as answer.

• Proxy-Sign oracle: Upon receiving a query PS(mi, mw
i, IDA

i, IDB
i), Ω first checks the L-list to get the current

public keys of the IDA
i and IDB

i. Then Ω makes H2(IDA
i ||PA

i) and H2(IDB
i ||PB

i) to obtain (IDA
i, PA

i,βA
i, TA

i) and
(IDB

i, PB
i, βB

i, TB
i) respectively and executes the following steps:

(1) Randomly pick ai, bi, ci, di∈Zq
*.

(2) Set RA
i=aiP1, UA

i= H3(mw
i||IDA

i||PA
i||RA

i)=ai
−1(biP−QA

i), and KA
i=biP1+βA

iPA
i.

(3) Set RB
i=ciP1, UB

i= H4(mi||mw
i||IDA

i||PA
i||RA

i)=ci
−1(diP−QB

i), and Vi= KA
i +diP1+βB

iPB
i.

If there is a tuple (mw
i, IDA

i, PA
i, RA

i) or (mi, mw
i, IDA

i, PA
i, RA

i) in the H3-list or H4-list, Ω updates ai or ci in order to
avoid conflict. Ω returns (RA

i, RB
i, Vi) to AI as answer and adds (mw

i, IDA
i, PA

i, RA
i, UA

i,⊥) and (mi, mw
i, IDB

i, PB
i, RB

i,
UB

i,⊥) into the H3-list and H4-list respectively.
Forgery: AI outputs a tuple (mw

*,IDA
*,PA

*,ΘA
*=(RA

*,KA
)) or (m,mw

*,IDA
*,PA

*,IDB
*,PB

,σ=(RA
*,RB

,V)).
(1) If the output is a valid tuple (mw

*,IDA
*,PA

*,ΘA
*=(RA

*,KA
*)) satisfying Case 1 as defined in Section 3, Ω first

checks L-list, H2-list and H3-list to find (IDA
*,QA

*,DA
,α,xA

*,PA
*), (IDA

*,PA
,β,TA

*), (mw
*,IDA

*,PA
*,RA

*,UA
,γ)

respectively.
If IDA

*≠IDf, Ω aborts. Otherwise, Ω can compute abP=KA
*−α*P1−β*PA

−γ RA
*.

(2) If the output is a valid tuple (m*,mw
*,IDA

*,PA
*,IDB

*,PB
,σ=(RA

*,RB
,V)) satisfying Case 2 as defined in

Section 3, Ω first checks L-list, H2-list, H3-list and H4-list to find (IDA
*,QA

*,DA
*,αA

*,xA
*,PA

*), (IDB
*,QB

*,DB
*,αB

*,
xB

*,PB
*), (IDA

*,PA
*,βA

*,TA
*), (IDB

*,PB
*,βB

*,TB
*), (mw

*,IDA
*,PA

*,RA
*,UA

*, γ *) and (m*,mw
*,IDB

*,PB
*,RB

*,UB
,h)

respectively.
If IDA

≠IDf, Ω aborts. Otherwise, Ω can compute abP = V−αA
*P1−βA

*PA
*−γ*RA

*−αB
*P1−βB

*PB
*−h*RB

*.
(3) If the output is a valid tuple (m*,mw

*,IDA
*,PA

*,IDB
*,PB

,σ=(RA
*,RB

,V)) satisfying Case 3 as defined in
Section 3, Ω first checks L-list, H2-list, H3-list and H4-list to find (IDA

*,QA
*,DA

*,αA
*, xA

*,PA
*),(IDB

*,QB
*,DB

*,αB
*,

xB
*,PB

*),(IDA
*,PA

*,βA
*,TA

*),(IDB
*,PB

*,βB
*,TB

*),(mw
*,IDA

*,PA
*,RA

*,UA
*, γ *) and (m*,mw

*,IDB
*,PB

*,RB
*,UB

,h)
respectively.

If IDB
≠IDf, Ω aborts. Otherwise, Ω can compute abP=V−αA

*P1−βA
*PA

*−γ*RA
*−αB

*P1−βB
*PB

*−h*RB
*.

Probability of success: We show that Ω solves the given instance of CDH problem with the probability
1 2

, ()G G
CDHSucc −

Ω . To do so, we analyze the three events that result in Ω’s success.
 E1: Ω does not abort in all the queries of Partial-Private-Key and Proxy-Key.

E2: AI can forge a valid partial proxy key or proxy signature.
E3: After Event 2 occurs, one of the following events happens.
(1) AI outputs a valid tuple (mw

*, IDA
*, PA

*, RA
*, KA

*) satisfying IDA
*=IDf.

(2) AI outputs a valid tuple (m*, mw
*, IDA

*, PA
*, IDB

*, PB
*, RA

*, RB
, V) satisfying IDA

*=IDf.

陈虎 等:可证安全的无证书代理签名方案 699

(3) AI outputs a valid tuple (m*, mw
*, IDA

*, PA
*, IDB

*, PB
*, RA

*, RB
, V) satisfying IDB

*=IDf.

The probability that Ω solves the given CDH problem is Pr(E1∩E2∩E3) =Pr(E1)Pr(E2|E1) Pr(E3| E2∩E1).

We have Pr(E1)≥
1(1) PPK ProKq q

CUq +−− , Pr(E2|E1) ≥
,
, ()

I

cma cida
CLPS ASucc and Pr(E3|E2∩E1) ≥

1
CUq− .

Hence, 1 2
, ()G G

CDHSucc −

Ω =Pr(E1∩E2∩E3) ≥
1 1 ,

,(1) ()PPK ProK

I

q q cma cida
CU CU CLPS Aq q Succ+− −− .

In summary, if AI succeeds within a time span t for a security parameter , then the CDH problem in G1 can be

solved by Ω within a time span t′ ≤ t + qCU tCU + qPPK tPPK + qPKR tPKR + qSV tSV + qH2tH2 + qH3tH3+ qH4tH4+ qPProK

tPProK + qProK tProK + qPS tPS and with the success probability 1 2
, ()G G

CDHSucc −

Ω ≥ 1 1 ,
,(1) ()PPK ProK

I

q q cma cida
CU CU CLPS Aq q Succ+− −− .

Theorem 2. In the random oracle model, if AII is a super type II adaptively chosen message and chosen

identity attacker against our CLPS scheme with the success probability ,
, ()

II

cma cida
CLPS ASucc within a time span t and after

asking at most qCU Create-user queries, qPKR Public-Key- Replacement queries, qSV Secret-Value queries, qH2 H2

queries, qH3 H3 queries, qH4 H4 queries, qPProK Partial-Proxy-Key queries, qProK Proxy-Key queries and qPS Proxy-

Sign queries, then there exists an algorithm Ω which can use AII to solve a random instance of the CDH problem in

G1 within time t′ ≤ t + qCU tCU + qPKR tPKR + qSV tSV + qH2tH2 + qH3tH3+ qH4tH4+ qPProK tPProK + qProK tProK + qPS tPS and

with the success probability 1 2
, ()G G

CDHSucc Ω
−

≥ 1 1(1) SV ProKq q
CU CUq q +− −−

,
, ()

II

cma cida
CLPS ASucc , where tCU (resp. tPKR, tSV, tH2, tH3,

tH4, tPProK, tProK and tPS) is the time cost of a Create-user (resp. Public-Key-Replacement, Secret-Value, H2, H3, H4,

Partial-Proxy-Key, Proxy-Key and Proxy- Sign) query.
Proof: Given a random instance (P, P1=aP, P2=bP) of the CDH problem in G1, we show how Ω can obtain

the value of abP with the help of the AII. In the proof, we regard the hash functions H2, H3, H4 as the random
oracles. We assume that AII doesn’t repeat any two identical queries.

Setup: In the game, Ω selects a random s∈Zq
*, set P0= sP and the system parameters param = (G1, G2, e, q, P,

P0, H1, H2, H3, H4). Ω returns param and the master-key s to AII.
Attack: AII can ask Ω Create-User, Public-Key-Replacement, Secret-Value, H2, H3, H4, Partial-Proxy-Key,

Proxy-Key and Proxy-Sign queries. In order to maintain consistency and avoid conflict, Ω keeps four lists L, H2,
H3, H4 to store the used answers, where L-list includes items of the form (IDi, Di, xi, Pi), H2-list includes items of the
form (IDi, Pi, βi, Ti), H3-list includes items of the form (mw

i, IDA
i, PA

i, RA
i, UA

i,γi), H4-list includes items of the
form (mi, mw

i, IDB
i, PB

i, RB
i, UB

i, hi). All of these lists are initially empty.

• Create-User oracle: Ω first picks a random f∈{1,2,…,qCU}. Upon receiving AII’s query CU (IDi), Ω picks

random xi∈Zq
*. If i≠f, Ω sets Di=sH1(IDi), Pi= xiP. If i=f, Ω sets Df= sH1(IDf), Pf=xfP +P1. Finally, Ω adds (IDi, Di,

xi, Pi) into the L-list and returns Pi to AII as answer.

• Public-Key-Replacement queries: On receiving a query PKR(IDi, Pi'), Ω checks the L-list and updates the

tuple (IDi, Di, xi, Pi) as (IDi, Di,⊥, Pi').

• Secret-Value oracle: On receiving a query SV(IDi), Ω first checks the L-list. If i=f, Ω aborts. Otherwise, if xi≠

⊥, Ω returns xi as answer; if xi=⊥, Ω returns⊥as answer.

• H2 Queries: On receiving AII’s query H2(IDi||Pi), Ω first picks a randomβi∈Zq
* such that there is no item

(*,*,βi, *) in the H2-list. If i=f, Ω sets Tf=βfP+P2. Otherwise, Ω sets T=βiP. Then Ω adds (IDi, Pi,βi, Ti) into the

H2-list and returns Ti to AII as answer.
• H3 Queries: On receiving AII’s query H3(mw

i||IDA
i||PA

i||RA
i), Ω first picks a randomγi∈Zq

* such that there is
no item (*,*,*,*,*,γi) in the H3-list and sets UA

i=γiP. Then Ω adds (mw
i, IDA

i, PA
i, RA

i, UA
i,γi) into the H3-list and

returns UA
i to AII as answer.

• H4 Queries: On receiving AII’s query H4 (mi||mw
i||IDB

i||PB
i||RB

i), Ω first picks a random hi∈Zq
* such that there

is no item (*,*,*,*,*,*,hi) in the H4-list and sets UB
i=hiP. Then Ω adds (mi, mw

i, IDB
i, PB

i, RB
i,UB

i, hi) into the H4-list

700 Journal of Software 软件学报 Vol.20, No.3, March 2009

and returns UB
i to AII as answer.

• Partial-Proxy-Key oracle: Upon receiving a query PProK(mw
i, IDA

i
), Ω first checks the L-list to get the

current public key of the IDA
i. Then Ω makes H2(IDA

i ||PA
i) to obtain (IDA

i, PA
i, βi, TA

i) and executes the following
steps:

(1) Randomly pick ai, bi∈Zq
*.

(2) Set RA
i=biPA

i, UA
i= H3(mw

i||IDA
i||PA

i||RA
i)=bi

−1(aiP−TA
i), and KA

i=aiPA
i+DA

i.
If there is the tuple (mw

i, IDA
i, PA

i, RA
i) in the H3-list, Ω updates bi in order to avoid this conflict. Ω returns (RA

i, KA
i)

to AII as answer and adds (mw
i, IDA

i, PA
i, RA

i, UA
i,⊥) into the H3-list.

• Proxy-Key oracle: Upon receiving a query ProK(mw
i, IDA

i, IDB
i), Ω checks the L -list to obtain (IDB

i, DB
i, xB

i,
PB

i). If the public key of IDB
i has been replaced, Ω returns ⊥. Otherwise, Ω first performs PProK(mw

i,IDA
i
),

H2(IDB
i||PB

i) to obtain the tuples (RA
i,KA

i) and (IDB
i,PB

i, βB
i,TB

i) respectively.
If IDB

i= IDf, Ω aborts. Otherwise, Ω sets SB
i= DB

i+xB
iTB

i and returns (KA
i, SB

i) to AII as answer
• Proxy-Sign oracle: Upon receiving a query PS(mi, mw

i, IDA
i, IDB

i), Ω first checks the L-list to get the current
public keys of the IDA

i and IDB
i. Then Ω makes H2(IDA

i ||PA
i) and H2(IDB

i ||PB
i) to obtain (IDA

i, PA
i, βA

i, TA
i) and

(IDB
i, PB

i, βB
i, TB

i) respectively and executes the following steps:
(1) Randomly pick ai, bi, ci, di∈Zq

*.
(2) Set RA

i=biPA
i, UA

i= H3(mw
i||IDA

i||PA
i||RA

i)=bi
−1(aiP−TA

i), and KA
i=aiPA

i+DA
i.

(3) Set RB
i= diPB

i, UB
i= H4(mi||mw

i||IDA
i||PA

i||RA
i)=di

−1(ciP−TB
i), and Vi= KA

i +ciPB
i +DB

i.
If there is a tuple (mw

i, IDA
i, PA

i, RA
i) or (mi, mw

i, IDA
i, PA

i, RA
i) in the H3-list or H4-list, Ω updates ai or ci in order to

avoid conflict. Ω returns (RA
i, RB

i, Vi) to AII as answer and adds (mw
i, IDA

i, PA
i, RA

i,UA
i,⊥) and (mi, mw

i, IDB
i, PB

i, RB
i,

UB
i,⊥) into the H3-list and H4-list respectively.

Forgery: AII outputs a tuple (mw
*,IDA

*,PA
*,ΘA

*=(RA
*,KA

)) or (m,mw
*,IDA

*,PA
*,IDB

*,PB
,σ=(RA

*,RB
,V)).

(1) If the output is a valid tuple (mw
*,IDA

*,PA
*,ΘA

*=(RA
*,KA

*)) satisfying Case 1 as defined in Section 3, Ω first
checks L-list, H2-list and H3-list to find (IDA

*,DA
*,xA

*,PA
*),(IDA

*,PA
*, β *,TA

*),(mw
*,IDA

*,PA
*,RA

*,UA
*, γ *)

respectively.
If IDA

*≠IDf, Ω aborts. Otherwise, Ω can compute abP=KA
*−Df −xfP2−βfPf−γ*RA

*.
(2) If the output is a valid tuple (m*, mw

*, IDA
*, PA

*, IDB
*, PB

,σ=(RA
*, RB

,V)) satisfying Case 2 as defined in
Section 3, Ω first checks L-list, H2-list, H3-list and H4-list to find (IDA

*, DA
*, xA

*, PA
*), (IDB

*, DB
*, xB

*, PB
*), (IDA

*,
PA

*,βA
*, TA

*), (IDB
*, PB

*,βB
*, TB

*), (mw
*, IDA

*, PA
*, RA

*,UA
,γ) and (m*, mw

*, IDB
*, PB

*, RB
*,UB

, h) respectively.
If IDA

≠IDf, Ω aborts. Otherwise, Ω can compute abP=V−Df−xfP2−βfPf−γ*RA
*−DB

*−βB
*PB

*−h*RB
*.

(3) If the output is a valid tuple (m*, mw
*, IDA

*, PA
*, IDB

*, PB
,σ=(RA

*,RB
,V)) satisfying Case 3 as defined in

Section 3, Ω first checks L-list, H2-list, H3-list and H4-list to find (IDA
*, DA

*, xA
*, PA

*),(IDB
*, DB

*, xB
*, PB

*),(IDA
*,

PA
*,βA

*, TA
*), (IDB

*, PB
*,βB

*, TB
*), (mw

*, IDA
*, PA

*, RA
*,UA

,γ) and (m*, mw
*, IDB

*, PB
*, RB

*,UB
, h) respectively.

If IDB
≠IDf, Ω aborts. Otherwise, Ω can compute abP=V−Df−xfP2−βfPf−h*RB

*−DA
*−βA

*PA
*−γ*RA

*.

Probability of success: With the similar method as in Theorem 1, we have the following conclusion: If AII

succeeds within a time span t for a security parameter , then the CDH problem in G1 can be solved by Ω within a

time span t′ ≤ t + qCU tCU + qPKR tPKR + qSV tSV + qH2tH2 + qH3tH3+ qH4tH4+ qPProK tPProK + qProK tProK + qPS tPS and with

the success probability 1 2
, ()G G

CDHSucc −

Ω ≥ 1 1(1) SV ProKq q
CU CUq q +− −−

,
, ()

II

cma cida
CLPS ASucc .

According to the above theorems, we can conclude that an original signer and other third parties who are not
designated as proxy signers cannot create a valid proxy signature. Thus our scheme enjoys strong unforgeability. In
addition, our scheme also enjoys the security requirements of proxy signatures such as verifiability, prevention of
misuse, strong undeniability, strong identifiability, etc. Due to page limitation, we will not describe them here.

陈虎 等:可证安全的无证书代理签名方案 701

5.3 Efficiency

In comparing our scheme with Lu, et al.’s scheme[10] in detail, we only consider the costly operations including
the bilinear pairing operation (BP), scalar multiplication in G1 (SM), exponentiation in G2 (E) and hash operation
(H). In both schemes, e(P, P), e(YID, QID), e(YID, (H2(mw,U)QID+U)), e(QID, P0), e(TID, PID), e(UID, RID), H1(ID),
H2(ID||PID) and H3(mw||ID ||PID||RID) can be pre-computed in the proxy signature verification phase, so they are not
counted into the operation cost in the table below. We use |*| to denote the bit length of *. The table shows that our
scheme has much less operations cost than the scheme in Ref.[10]. Therefore, our scheme is more efficient.

Table 1 Efficiency comparison

Schemes PPro-K-Gen PPro-K-Ver Pro-Sign Pro-Ver Provable security

Scheme in Ref.[10] 2SM+1H 4BP+1SM+1H 2SM+1E+1H 5BP+3E+1H No formal proof provided

Our scheme 1SM+1H 2BP+1H 2SM+1H 2BP+2H Yes

6 Conclusion

In this paper, we have presented an appropriate security model as well as a concrete construction of
certificateless proxy signature scheme. Our security model takes into account the strongest adversaries in
certificateless public key settings. Without pairing operation in proxy signature phase and with two pairing
operations in proxy signature verification phase, our scheme is efficient. It enjoys all the security requirements of
proxy signatures. The security of our scheme is proved in the random model with the intractability of the
Computational Diffie-Hellman problem. Due to its efficiency and certificateless, it can be widely used in areas such
as electronic commerce, mobile agent systems, etc.

References:
[1] Mambo M, Usuda K, Okamoto E. Proxy signature: Delegation of the power to sign messages. IEICE Trans. on Fundamentals, 1996,

E79-A(9):1338−1353.
[2] Zhang K. Threshold proxy signature schemes. In: Proc. of the 1997 Information Security Workshop. Japan, 1997. 191−197.
[3] Yi LJ, Bai GQ, Xiao GZ. Proxy multi-signature scheme: A new type of proxy signature scheme. Electronics Letters, 2000,36(6):

527−528.
[4] Huang XY, Mu Y, Susilo W, Zhang FT. Short designated verifier proxy signature from pairings. In: Proc. of the SecUbiq 2005.

LNCS3823, Nagasaki, Springer-Verlag, 2005. 835−844.
[5] Zhang FG, Kim K. Efficient ID-based blind signature and proxy signature from bilinear pairings. In: Safavi-Naini R, Seberry J, eds.

Proc. of the ACISP 2003. LNCS 2727, Springer-Verlag, 2003. 312−323.
[6] Al-Riyami S, Paterson K. Certificateless public key cryptography. In: Proc. of the Asiacrypt 2003. LNCS 2894, Springer-Verlag,

2003. 452−473.
[7] Huang XY, Mu Y, Susilo W, Wong DS, Wu W. Certificateless signature revisited. In: Proc. of the Acisp 2007. LNCS 4586,

Springer-Verlag, 2007. 308−322.
[8] Zhang ZF, Wong DS, Xu J, Feng DG. Certificateless public-key signature: Security model and efficient construction. In: Zhou J,

Yung M, Bao F, eds. Proc. of the ACNS 2006. LNCS 3989, Springer-Verlag, 2006. 293−308.
[9] Li X, Chen K, Sun L. Certificateless signature and proxy signature schemes from bilinear pairings. Lithuanian Mathematical

Journal, 2005,45(1):76−83.
[10] Lu R, He D, Wang CJ. Cryptanalysis and improvement of a certificateless proxy signature scheme from bilinear pairings. In: Proc.

of the 8th ACIS Int’l Conf. on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing. 2007.
285−290. doi: 10.1109/SNPD

[11] Yap WS, Heng SH, Goi BK. Cryptanalysis of some proxy signature schemes without certificates. In: Sauveron D, et al., eds. In:
Proc. of the WISTP 2007. LNCS 4462, Springer-Verlag, 2007. 115−126.

CHEN Hu was born in 1975. He is a M.D.
candidate at School of Mathematics and
Computer Science Nanjing Normal
University. His current research areas are
information security and cryptography.

SONG Ru-Shun was born in 1953. He is a
professor at School of Mathematics and Computer
Science Nanjing Normal University. His research
area is network security.

 ZHANG Fu-Tai was born in 1965. He is a
professor and doctoral supervisor at School
of Mathematics and Computer Science
Nanjing Normal University. His research
area is cryptography.

