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Abstract:  In this paper, the typed category theory is extended and combined with process algebra to provide a 
unified description framework for the formal semantics of architecture-centric model transformations. The structural 
semantics of architecture models are described within typed category diagrams, and the behavioral semantics are 
represented by process traces affiliated to the categorical framework, and the mapping relations between component 
models are formally described by morphisms and functors of category theory. The framework can be used for the 
description, analysis and judgment of property preservation of model transformations, and thus make an effective 
support for model-driven software development. 
Key words:  model-driven development; model transformation; software architecture; semantic description 

摘  要: 在对类型范畴理论进行扩展的基础上,将其与进程代数相结合,为软件体系结构模型及其间的转换关系

提供了一种统一的语义描述框架.模型的结构语义由类型范畴图表来指代,其行为语义则由范畴附带的进程行为迹

来表示,模型间的映射关系用范畴理论中的态射和函子来形式化描述.该描述框架可用于模型转换中特性保持问题

的描述、分析和判定,从而为模型驱动的软件开发提供有力的支持. 
关键词: 模型驱动开发;模型转换;软件体系结构;语义描述 
中图法分类号: TP301   文献标识码: A 

1   Introduction 

Model-Driven development (MDD) has become an active research area of software engineering[1], which deals 
with the complexity of software development by raising the level of abstraction. The correctness of model 
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transformations is a key issue of model-driven engineering. The general criteria about the correctness of model 
transformations comprise syntactic correctness, syntactic completeness, termination, confluence and semantic 
consistency[2]. There have already been comparatively mature solutions for the judgment of these criteria with the 
exception of semantic consistency. How to ensure semantic consistency between the models before and after 
transformation has become a key issue on the road of MDD becoming more mature. 

As the standard for object-oriented modeling, the UML is still largely undefined from a semantic point of view, 
which brings difficulties in such a scenario due to the ambiguity of models[3]. That makes the modeling concepts 
and their semantic specifications do not very well suit the starting point for some works of MDD, such as automatic 
code generation and formal verification. Many researchers[1,3] believe that the current descriptions of high-level 
models of MDD are neither complete nor accurate for lacking understandable formal semantic meanings, which 
makes it difficult to achieve automatic model transformations, and also hard to build effective mechanisms for the 
evaluation and verification on the transformations. The definition, description, and proof of semantic property 
preservation of model transformation are still problems unresolved[4]. An integrated semantic model for non-formal 
modeling languages is still missing. The existing describing mechanisms for the constraints of property preservation 
are all built for some specific scenarios[4−7], which makes them not generic enough for more situations. All the facts 
show that, the lack of description and calculation approaches for semantic properties currently is the main lacking 
theory of model-driven software development, and to build a theory for semantic description and calculation 
becomes the basis and urgency for its healthy and rapid development. 

Category theory[8] provides the right level of mathematical abstraction to address languages for describing 
software architectures, and its abstract framework provide correct semantics for the configuration of complex 
systems from their component parts[9]. In this paper, based on the work by Fiadeiro and Lopes[9], a unified semantic 
description framework for architecture-centric models and their transformational relationships is proposed by 
combining category theory with process algebra. It can be used for the description, analysis and judgment of 
property preservation of model transformations. 

The rest of this paper is organized as follows. In Section 2, formal semantics of component-based architecture 
models are presented based on category theory and process algebra. Formal description of architecture-centric 
model mapping is given in Section 3. A case study about a supply chain management system is shown in Section 4 
to further explaining the ideas. The paper ends with conclusions and future works. 

2   Formal Semantics of Architecture Models 

In this paper, category theory is used as a basic framework for the semantic description of architecture models. 
The basic knowledge about category theory can be found in Ref.[8], which is not repeated here. From the point of 
view of describing and verifying semantic properties, the distinction between component and connector is often 
subtle[10]. In order to maintain regularity and simplicity, we do not distinguish between these categories at the 
specification level, and both component and connector are generically called component. 

Figure 1 depicts the architecture of a supply chain management system, which will be used to illustrate the 
relevant concepts and models throughout the paper. Herein, we simplify the services and omit some details, and 
only six components are contained: the shopping service (Shop), the store service (Store), the banking service 
(Bank), the transporting service (Transport), the supplying service (Supplier) and the Email service (Email). The 
Shop and the Store are combined together to form a composite component (ServiceSystem). The client component 
(Client) can require purchasing goods by calling the method SellItem provided by the Shop, and it also can require 
returning goods by calling the method Recede. In an ongoing buying, the Shop first checks the store to make sure 
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whether the stock is sufficient or not. The buying will fail if the stock is insufficient. If the Store keeps the required 
goods sufficiently, it will subtract the purchase quantity from the total stock. Then, the Shop will call the method 
ProcPay provided by the Bank to require the payment of the customer. If the stock is insufficient or the total 
quantity of the required goods is less than a fixed number, the Store will place an order to the Supplier after 
checking. Moreover, the Shop also can inform the Bank of returning the payment of the customer through the 
method Compensate. After the Bank confirms the paying, the Shop will inform the Transport through the method 
ShipItem of transporting the goods to the customer. The Shop can also inform the Transport through the method 
WithDraw of back transporting the goods. If the buying failed, the Shop will inform the Email service of sending an 
apologetic message to the client component. 
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Fig.1  Architecture depiction for a supply chain management system 

2.1   Component specification 

Process algebra (PA)[10] is used to formally describe the external behaviors of components in this paper. The 
basic knowledge about PA can be found in Ref.[11]. The external behavioral trace of a component is expressed as a 
state transition sequence BP=〈SS,AS,TS〉, where SS={si|0≤i≤n} is a finite set of component states, and sInit and sFina 
respectively represent the initial state and the final state of the component, and AS={ai|0≤i≤m} is a finite set of 
component actions, and TS⊆SS×AS×SS is the finite set of state transitions which represent the interactive behavior 
of the component. The trace 〈a1,a2,…,an〉 will be called a complete external behavioral trace iff the transition set TS 
defined as s0→a1s1→a2s2→…→ansn (s0=sInit,sn=sFina). 

Definition 1 (component signature). A component signature is a 8-tuple θ=〈Cid,Σ,A,Γ,fa,fp,D,BP〉, where 
(1) Cid is the unique identifier of the component; 
(2) Σ=〈S,Ω〉 is a data signature in the usual algebraic sense, i.e., S is a set of sort symbols and Ω is an 

S*×S-indexed family of function symbols; 
(3) A is an S*×S-indexed family of attribute symbols, in which each attribute is typed by a data sort in S; 
(4) Γ is an S*-indexed family of port symbols; 
(5) fa: A→2S is a set of total functions, which shows the properties of the attributes; 
(6) fp: Γ→2S is a set of total functions, which shows the properties of the ports; 
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BPShop

(7) D: Γ→2A is a total function, and for each p∈Γ, D(p) is the collection of attributes that can be affected via 
the port p; 

(8) BP is the description of the external behaviors of the component, which is formally defined using PA. 
Definition 2 (component specification). A component specification is a pair (θ,Δ), in which θ is a component 

signature 〈Cid,Σ,A,Γ,fa,fp,D,BP〉 and Δ, the body of the specification, is a quadruple (I,F,B,Φ), where 
(1) I is a set of Σ-propositions constraining the initial values of the attributes; 
(2) F assigns to every port p∈Γ a non-deterministic command, which relates all attributes in D(p) to the actions 

of G(p). Here G(p) represents the set of actions of a port p; 
(3) B assigns to every port p∈Γ a Σ-proposition 

as its guard, which represents the conditions and 
constraints that should be satisfied for achieving the 
objectives of the component; 

(4) Φ is a finite set of θ-formulae (the axioms of 
the description), which represents the functional and 
non-functional objectives of the component. 

The component specification for the Shop in 
Fig.1, denoted as CPShop, is shown in Fig.2. In the 
specification CPShop=(θShop,ΔShop), ΔShop=(IShop,FShop, 
BShop,ΦShop) is shown by the Axioms part. Herein, the 
axiom “ShipItem⇒ProcPay(fee)=OK” indicates that 
the goods can be transported only after the customer 
has paid successfully. The component signature θShop= 
〈CidShop,ΣShop,AShop,ΓShop,faShop,fpShop,DShop,BPShop〉, 

Component Shop 
Attributes 

Private Cid: String; 
Private OrderedItem: ItemType; 
Private ChkAvail: Boolean; 
Private PayInfo: Boolean;  
Private ShipInfo: ItemType; 
… 

Ports 
 In PT1{ 

Boolean SellItem(item: ItemType); 
Boolean Recede(item: ItemType); 

 } 
In/Out PT2{ 

Boolean ShipItem(item: ItemType); 
Boolean Withdraw(item: ItemType); 

 } 
Out PT3{ 

Void SdLetter(letter: LetterType); 
 } 

In/Out PT4{ 
Boolean ChkStore(item: ItemType); 
Boolean RcoStore(item: ItemType); 

 } 
In/Out PT5{ 

Boolean ProcPay(fee: MoneyType); 
Boolean Compensate(fee: MoneyType); 

 } 
… 

Axioms 
SellItem(item)⇒OrderedItem=item; 

 ChkAvail=ChkStore(item); 
Withdraw(item)⇒ShipInfo=item; 
PayInfo=ProcPay(fee); 
ShipItem(item)⇒ProcPay(fee)=OK; 
SdLetter(letter)⇒SellItem(item)=FAIL; 
ProcPay(fee)=FAIL⇒RcoStore(item); 
((ChkStore(item)=FAIL)∧(ProcPay(fee)=OK))=FALSE; 

 … 
Behavior 

where ΣShop is the data signature;AShop ={OrderedItem, 
ChkAvail,PayInfo,Shipinfo}; ΓShop = {PT1, PT2, PT3, 
PT4, PT5}; faShop describes the information of the 
attribute types, etc. Herein, type(OrderedItem)= 
ItemType, type(ChkAvail)=Boolean, type(PayInfo)= 
Boolean, type(ShipInfo)=ItemType; fpShop describes 
the information of port types, the types of received 
messages, etc. Herein, type(PT1)=In, MessageType 
(PT1) = ItemType, type(PT2)=In/Out, MessageType 
(PT2)=ItemType. The description of DShop contains: 
DShop(PT1)={OrderedItem}, DShop(PT2)= {Shipinfo}, 
DShop(PT3)={ }, DShop(PT4)={ChkAvail}, DShop(PT5) 
={PayInfo}. BPShop is the behavioral description, in 
which BuyRequest, RecedeRequest, ChkStore, … are 
the actions of the component. 

BuyRequest.ChkStore.(ChkOK.RequirePay.(PayFeeOK.Δ

ShipItem.BPShop+PayFeeFail.RcoStore.SendLetter. 
BPShop)+ChkFail.SendLetter.BPShop)+RecedeRequest. 
Withdraw.Compensate.RcoStore.BPShop; 

… 
 

Fig.2  Specification of the component Shop 

2.2   Component specification morphism 

The relationships between component specifications are represented by morphisms of category theory. 
Definition 3 (component signature morphism). Given two component signatures θ1=〈Cid1,Σ1,A1,Γ1,fa1,fp1, 

D1,BP1〉 and θ2=〈Cid2,Σ2,A2,Γ2,fa2,fp2,D2,BP2〉, a morphism from θ1 to θ2, denoted by σ: θ1→θ2, consists of 



 

 

 

侯金奎 等:以体系结构为中心的模型转换的语义描述框架 2117 

 

j

(1) An algebraic signature mapping σΣ: Σ1→Σ2; 
(2) An attribute mapping σat: A1→A2, such that, 

(2.1) For some attributes f: s1,…,sn→s in A1, there exist attribute symbols σat(f): σΣ(s1),…, σΣ(sn) →σΣ(s) 
in A2; 

(2.2) ∃a∈A1, fa1(a)=Dfa2(σat(a)), where =D means the consistency relations between property descriptions; 
(3) A port mapping σac: Γ1→Γ2, such that, 

(3.1) for some ports p: s1,…,sn in Γ1, there exist port symbols σac(p): σΣ(s1), …, σΣ(sn) in Γ2; 
(3.2) ∃p∈Γ1, fp1(p)=Dfp2(σac(p)); 

(4) ∃p∈Γ1, σat(D1(p))⊆D2(σac(p)); 
(5) A behavioral description mapping σBP: BP1→BP2. 
Conditions (1)~(3) show that the component signature morphism consists of a port mapping and an attribute 

mapping, and the consistency between their property descriptions should be preserved. The fourth condition 
guarantees that the attributes affected by a certain port must be preserved through the morphism. The last condition 
shows the mapping relations between the behavioral descriptions of the two components. 

Definition 4 (component specification morphism). Given two component specifications CP1=〈θ1,Δ1〉 and 
CP2=〈θ2,Δ2〉, where θ1=〈Cid1,Σ1,A1,Γ1,fa1,fp1,D1,BP1〉, Δ1=(I1,F1,B1,Φ1), θ2=〈Cid2,Σ2,A2,Γ2,fa2,fp2,D2,BP2〉, Δ2=(I2,F2, 
B2,Φ2), a morphism from CP1 to CP2, denoted by ω: CP1→CP2, is a signature morphism σ: θ1→θ2, such that 

(1) ∃q∈Φ1, ω(q)∈Φ2; 
(2) ∃p1∈Γ1, a1∈D1(p1), F2(σ(p1), σ(a1))⇒ω(F1(p1,a1)); 
(3) ∃q∈I1, ω(q)∈I2; 
(4) ∃p1∈Γ1, B2(σ(p1))⊇ω(B1(p1)). 
The first condition given above guarantees the functional and non-functional objectives should be preserved. 

The second condition means that the effects of the relevant instructions can only be preserved or made more 
deterministic, and the third condition indicates that some initialization conditions are preserved. The last condition 
allows relevant guards to be strengthened but not to be weakened. 

2.3   Hierarchical composition of component model 

A composite component is constructed from interconnecting instances of more primitive components, which 
defines a configuration. Category theory supports this kind of hierarchical design, in which the colimit can be used 
for defining composition operations between components. In this way, a composite component is described as a 
categorical diagram involving component specifications and specification morphisms. The objects are components 
and the arrows (morphisms) indicate how the components are interconnected. The morphism types imply the 
different semantics of component relations. Interaction morphism determines how a component’s service is 
combined with the services provided by other components in the system. Composition morphism depicts a kind of 
structure-preserving mappings, which is used to establish the relationship that must exist between two component 
descriptions so that one of them may be considered as a sub-component of the other. 

The behavioral semantics of a composite component can be computed based on its configuration and the 
behaviors of its subcomponents, in which the parallel composition operator “_||π_” of PA[10] can be used. For 

example, given two connected components θi=〈Cidi,Σi,Ai,Γi,fai,fpi,Di,BPi〉 and θj=〈Cidj,Σj,Aj,Γj,faj,fpj,Dj,BPj〉, we can 
use ( , )||

i jiBP π θ θ BP  to represent the composite behavior iff the collection of interaction ports between the two 

components are expressed by π(θi,θj). A group of interacting components {θ1,θ2,…,θn} (θi=〈Cidi,Σi,Ai,Γi,fai,fpi,Di, 
BPi〉) can be assembled into an architecture, and the behavioral semantics of the whole architecture can be 
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formalized as 
1 2 1 3 2 3 1 11 ( , ) 2 ( , ) ( , ) 3 ( , ) ... ( , )|| || || ... ||

n n n nBP BP BPπ θ θ π θ θ π θ θ π θ θ π θ θ−∪ ∪ ∪ BP . 

Definition 5 (colimit of component signatures). Given two component signatures θ1=〈Cid1,Σ1,A1,Γ1,fa1,fp1, 
D1,BP1〉 and θ2=〈Cid2,Σ2,A2,Γ2,fa2,fp2,D2,BP2〉, the colimit of θ1 and θ2 is given by the signature θ=θ1||θ2=〈Cid,Σ,A, 
Γ,fa,fp,D,BP〉 and two composition morphisms σ1: θ1→θ and σ2: θ2→θ, where 

(1) (Σ,
1Σσ ,

2Σσ ) is the amalgamated sum of Σ1 and Σ2, in which 
1Σσ : Σ1→Σ and 

2Σσ : Σ2→Σ; 

(2) (A,
1acσ ,

2acσ ) is the amalgamated sum of A1 and A2, in which 
1acσ : A1→A and 

2acσ : A2→A; 

(3) (Γ,
1atσ ,

2atσ ) is the amalgamated sum of Γ1 and Γ2, in which 
1atσ : Γ1→Γ and 

2atσ : Γ2→Γ; 

(4) ∀ai∈Ai, i=1,2, fa(
iatσ (ai))=fai(ai); 

(5) ∀pi∈Γi, i=1,2, fp(
iacσ (pi))=fpi(pi); 

(6) ∀pi∈Γi, i=1,2, D(σi(pi))=σi(Di(pi)); 
(7) 

1 21 ( , ) 2||BP BP BPπ θ θ= /{e|e∈π(θ1,θ2)}, where “_/_” is the hiding operator of PA[10]. 

Definition 6 (colimit of component specifications). Given two component specifications CP1=〈θ1,Δ1〉 and 
CP2=〈θ2,Δ2〉, in which θ1=〈Cid1,Σ1,A1,Γ1,fa1,fp1,D1,BP1〉, Δ1=(I1,F1,B1,Φ1), θ2=〈Cid2,Σ2,A2,Γ2,fa2,fp2,D2,BP2〉, Δ2=(I2, 
F2,B2,Φ2), the colimit of CP1 and CP2 is given by the specifications CP=CP1||CP2=(θ,Δ) and two composition 
morphisms ω1: CP1→CP and ω2: CP2→CP, where 

(1) θ=θ1||θ2, σ1: θ1→θ and σ2: θ2→θ constitute the colimit of θ1 and θ2; 
(2) Δ=(I,F,B,Φ) is computed as follows: 

(2.1) I=ω1(I1)∪ω2(I2); 
(2.2) ∀pi∈Γi, ai∈Di(pi), i=1,2, F(σi(pi), σi(ai))=ωi(Fi(pi,ai)); 
(2.3) ∀pi∈Γi, i=1,2, B(σi(pi))=ωi(Bi(pi)); 
(2.4) Φ=Φ1∪Φ2. 

2.4   Architecture model 

Typed category proposed by Lu[11] adds some representational and inferential power to the category theory, but 
does not break the basic framework of category theory. In this paper, the typed category is extended further by 
adding types to both the objects and the morphisms, and each type can be defined with a series of features. Thereby, 
a bijective mapping from the concepts of software architecture to the ones of the typed category can be defined as 
follows: component instance to object, component relation to morphism, component specification to object type, 
relation between component specifications to morphism type, component properties to features of object types, 
properties of component relations to features of morphism types. In this way, a software architecture model can be 
expressed as a typed category. 

Definition 7 (architecture model). An architecture model is a 5-tuple AM=〈CO,CR,CT,RT,RuleS〉, where CO 
is a collection of component instances as objects; CR is a collection of component-relationship instances as object 
morphisms defined over CO; CT is a collection of component specifications; RT is a collection of specification 
morphisms as relation-types defined over CT; RuleS is the set of rules for relation-type composition. In addition to 
the basic conditions of the definition of category[8], the following conditions also have to be satisfied: 

(1) CO={oi|1≤i≤n, sort(oi)∈CT}, where sort represents a function which returns the type of an object; 
(2) CR={rj|0≤j≤m, ∃a,b∈CO, rj=(a,b,t), t=sort(rj)∈RT}; 
(3) RuleS: RT×RT→RT, and for all (t,s)∈dom(RuleS), the type w=t×s is called the composed type of t and s; 

and for all ri,rj∈CR, ri=(a,b,t), rj=(b,c,s), there exists a composed morphism rk=(a,c,w)=rj◦ri∈CR; 
(4) For each a∈CO, there exists an identity morphism ra=(a,a,u), u=sort(ra)∈RT; and for all t∈RT,  

u×t=t×u=t hold; 
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(5) For all ri=(a,b,t), rj=(b,c,s), rk=(c,d,q), rk◦(rj◦ri)=(a,d,(t×s)×q)=(a,d,t×(s×q))=(rk◦rj)◦ri; 
(6) For all ri=(a,b,t)∈CR, ri◦ra=rb◦ri=ri, where ra=(a,a,u), rb=(b,b,u). 

In our notation of categorical diagram, an architecture model is a typed category composed of component 
specifications and their morphisms. The specification of the whole system configurations is given by the colimit of 
the underlying diagrams. The semantics of the configuration diagram should be seen as an abstraction of the 
cooperative execution that is obtained by coordinating the local executions according to the interconnections. 

3   Architecture Model Mapping and Semantic Property Preservation 

In this paper, model mapping especially represents the mapping relations from the component specifications at 
a higher abstract level to the specifications at a lower one, which also can be formally described by morphisms of 
category theory (called mapping morphisms). Category theory also provides us with the means to establish the 
relationships between architectural models at different abstract levels: functors. 

Definition 8 (architecture mapping functor). An architecture mapping functor from the architecture model 
AM1=〈CO1,CR1,CT1,RT1,RuleS1〉 to AM2=〈CO2,CR2,CT2,RT2,RuleS2〉, denoted by Fu: AM1→AM2, is a function that 
satisfies the following: 

(1) For every component object cs∈CO1, Fu(cs)∈CO2; 
(2) For every component specification cp∈CT1, Fu(cp)∈CT2; 
(3) Fu is a homomorphism from RT1 to RT2 with the following properties: 

(3.1) Fu associates each type t∈RT1 with a type Fu(t)∈RT2; 
(3.2) For each unit type of identity morphisms u∈RT1, u=Fu(u)∈RT2; 
(3.3) For all t,s∈RT1, always Fu(t),Fu(s)∈RT2, and Fu(t×s)=Fu(t)×Fu(s); 

(4) Fu is a homomorphism from CR1 to CR2 with the following properties: 
(4.1) For all cs,cs′∈CO1, (cs,cs′,t)∈CR1 implies that (Fu(cs),Fu(cs′),Fu(t))∈CR2; 
(4.2) For all ra=(a,a,u)∈CR1, u=sort(ra)∈RT1, always Fu(ra)=(Fu(a),Fu(a),Fu(u))=(Fu(a),Fu(a),u)∈CR2; 
(4.3) Fu(f◦g)=Fu(f)◦Fu(g), whenever g,f∈CR1 and f◦g is defined. 

Model-driven development can be regarded as a multi-level architecture space composed of architecture 
models at different levels of abstraction, and the development process can be considered as a series of 
architecture-centric model transformations that preserve the design decisions and semantic properties of source 
models. 

The formal description of architecture-centric model mappings can be used to judge whether a transformation 
satisfies some property preservation constraints or not. In typed category based architecture model, the structural 
semantics is represented within categorical diagrams which depicts the architecture configuration and specifies the 
components and their relations. In order to analyze the impact of a model transformation on the organizational 
structure of the system, we can first analyze the impact on dependency relations of components according to their 
interconnections. Let COS be the set of components defined in the source architecture model AMS, and 
CRS={〈cm,cn〉|cm,cn∈COS, m≠n} be the set of component relations, and GS=〈VS,ES〉 be the corresponding categorical 
diagrams where VS↔COS, ES↔CRS. Similarly, the categorical diagrams for the target architecture model 
AMT=〈COT,CRT〉 is represented as GT=〈VT,ET〉, where VT↔COT, ET↔CRT. The following is the algorithm to judge 
whether the dependency relations are consistent or not. 

Algorithm 1. To judge whether the dependency relations of components are consistent between before and 
after model transformation. 

Inputs: two categorical diagrams GS=〈VS,ES〉 and GT=〈VT,ET〉, which respectively represent the source 
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architecture model and the target model, and M indicates the mapping relations; 
Outputs: T (means consistent), F (means inconsistent); 
Variables: DC (a Boolean variable); 
1. DC:=F; 
2. If M(VS)⊄VT and M(VS)≠VT, then the mapping is inconsistent; goto step 6; 
3. Calculating the transitive closure of graph GS, denoted as ClosureS; 
4. Calculating the transitive closure of graph GT, denoted as ClosureT; 
5. if M(ClosureS)⊆ClosureT, then the mapping is consistent of component dependency and let DC:=T; 

otherwise the mapping is inconsistent; 
6. return DC. 

The time complexity of Algorithm 1 is the same as that of calculating transitive closure, which is O(n3). 
Borrowing the concept of weak equivalence of PA[10], we can make a judgment on behavioral semantic 

consistency of model transformation according to the behavioral traces described in component specifications at 
different levels of abstraction. For example, the external behaviors of the two corresponding component models 
(respectively denoted as AMS and AMT) at different levels are respectively formalized by two processes BPi and BPj, 
then the mapping M: AMS→AMT is called preserving behavioral semantics if and only if BPj is weakly equivalent to 
BPi. It will be illustrated further by a practical case in the next section. 

4   A Case Study 

The supply chain management system shown in Fig.1 is still used in this section to illustrate the application of 
the theory and approach proposed in this paper. We assume that, in the target architecture after model 
transformation, the combination of three subcomponents (respectively named ShopAgency, StoreAgency and 
BankAgency) achieves the functions of the Shop in the source model. The ShopAgency is responsible for interacting 
with customers, and the StoreAgency is used for accessing to the stock data service and interacting with the 
component Transport, and the BankAgency is in charge of processing transactions with the banking services. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The categorical diagram of the source model is shown as the left part of Fig.3, where the morphisms c1~c7 are 

Source model
Target model

Transport 

Email 

Supplier 

Store 

ServiceSystem

System 

Bank 

Shop 

m10 

m9 

m8 

m7 

m6 

m5 

m4 

m3 

m2 

m1 

f1 

f2 

f3 

f4 

f5 

c1 

c2 

c3

c4

c5

c6

c7 

T-Transport

T-Email

T-Supplier

T-Store

T-System
T-ServiceSystem

T-BankAgency 

T-ShopAgency 

T-StoreAgency 

t c1

t

−

T-Bank 

−c2

t−c3

t−c4

t−c5

t−c6

t−c7

t−c8
t c9

t f1

t

−

−

−f5

t f3
t−

−
f2

t−f4 

t−f6 t−f7 

t−f8 

Fig.3  Mapping relations between the source model and the target
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Component T-Shop 
Attributes 

Private Cid: String; 
Private OrderedItem: ItemType; 
Private RecedeItem: ItemType; 
Private PayInfo: Boolean; 
Private ReStoreItem: ItemType; 
Private ChkAvail: Boolean; 
… 

Ports 
 In PT1{ 

Boolean SellItem(item: ItemType); 
Boolean Recede(item: ItemType); 

 } 
Out PT2{ 

Void SdLetter(letter: LetterType); 
 } 

Out PT6{ 
Void SdLetter(letter: LetterType); 

 } 
In/Out PT7{ 

Boolean ShipItem(item: ItemType); 
Boolean Withdraw(item: ItemType); 

 } 
In/Out PT8{ 

Boolean ChkStore(item: ItemType); 
Boolean RcoStore(item: ItemType); 

 } 
In/Out PT12{ 

Boolean ProcPay(payinfo: PayInfoType); 
Boolean Compensate(payinfo:PayInfoType); 
Boolean InfoBack(payinfo: PayInfoType); 

 } 
… 

Axioms 
 SellItem(item)⇒OrderedItem=item; 
 Recede(item)⇒RecedeItem=item; 
 RcoStReq(item)⇒ReStoreItem=item; 

PayInfo=InfoBack(payinfo); 
 ChkAvail=ChkStore(item); 

InfmShip(item)⇒RecPayInfo(payinfo)=OK; 
SdLetter(letter)⇒RecPayInfo(payinfo)=FAIL; 
RcoStReq(item,0)⇒RecPayInfo(payinfo)=FAIL; 
RcoStReq(item,1)⇒RecPayInfo(payinfo)=OK; 
SdLetter(letter)⇒(ChkStReq(item)=FAIL)∨(RecPayInfo(payinfo)=FAIL); 
PayFeeReq(payinfo)⇒ChkStReq(item)=OK; 
ProcPay(fee)=FAIL⇒RcoStore(item); 
(ChkStore(item)=FAIL)∧(ProcPay(fee)=OK)=FALSE; 
ChkStore(item)=FAIL⇒Order(order); 

 … 
Behavior 

BPAG

composition morphisms, and f1~f5 are interaction morphisms. The corresponding target architecture model 
represented within a categorical diagram is shown as the right part of Fig.3. The mapping relations from the source 
to the target are drawn with dashed arrows, which satisfy the commutative law[8] of the category diagram, such as 
t−f1◦m7=m1◦f1, t−c4◦m6=m5◦c4, t−f5◦m7=m4◦f5, and so on. These properties show that the transformation following these 
mappings preserves consistency of the dependency relations among the components. Due to the limited space, the 
component specifications for the ShopAgency, the StoreAgency and the BankAgency are all omitted in this paper, and 
only their colimit specification computed according to Definition 5 and Definition 6, denoted by CPT-Shop, is shown 
in Fig.4, where some inner port descriptions are left out. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Δ BuyRequest.TrnChkStore.(RecChkOK.TrnReqPay.(RecPayFeeOK.ShipItem.BPAG+ 
PayFailRec.RcoStore.SendLetter2.BPAG)+RecChkFail.SendLetter1.BPAG)+ 
RecedeRequest.Withdraw.TrnCompensate.RcoStore.BPAG; 

… 

Fig.4  Colimit specification of the ShopAgency, the StoreAgency and the BankAgency 
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Next, we analyze the behavioral semantic descriptions BPShop in Fig.2 and BPAG in Fig.4. Obviously, BPShop is 
weakly equivalent to BPAG. According to the description in Section 3, we know that the transformation M: 
MShop→MT-Shop consistently preserves behavioral semantics. 

5   Conclusion and Future Work 

In this paper, category theory and process algebra are combined together to provide a unified semantic 
description framework for architecture models and their mapping relations. Architecture is inherently about putting 
parts together to make larger systems. The colimit operation of category theory and the parallel composition 
operator of process algebra work particularly well in this regard. In this way, one can reason about all parts of a 
system separately, which preserves the properties established about the parts. The semantic description framework 
commendably captures the essence, process and requirements of MDD, which can be used as a new theoretical 
guidance for the cognition, design and semantic calculation of model transformations and model-driven 
development. As far as future work is concerned, there are several directions that we would like to explore: (1) to 
study more about the semantic properties which should be preserved in model transformations; (2) to make a 
summary of the generic proving processes and propose algorithms to strictly prove whether a transformation 
satisfies a property preservation constraint or not, and thus support the design and verification of transformation 
rules. 
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