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Abstract:  This paper discusses the use of intuitionistic linear-time μ-calculus (IμTL) whose underlying model is 
based on Heyting algebra of prefixed closed sets as the basis for the specification of assumption and guarantee 
paradigm, and then propose an assumption-guarantee rule in IμTL. The rule formulated is more general then 
previously proposed rules that used linear-time temporal logic (LTL) in the specification of assumption and 
guarantee paradigm and extends the discussion for safety properties of the form “always ϕ”, and therefore 
represents more uniform reasoning of assumption and guarantee specifications for also supporting circular 
compositional reasoning. 
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摘  要: 讨论了以基于前缀封闭集合的 Heyting 代数的直觉解释的线性μ-演算(IμTL)作为描述“假设-保证”的逻

辑基础的问题,提出了一个基于 IμTL 的“假设-保证”规则.该规则比往常应用线性时序逻辑(LTL)作为规范语言的那

些规则具有更好的表达能力,扩展了对形如“always ϕ”等安全性质的“假设-保证”的范围,具备更一般的“假设-保证”
推理能力及对循环推理的支持. 
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1   Introduction 

Program verification is concerned with the question of whether certain formal model of a system under 
investigation satisfies certain properties. One of the most common methods is model checking in which each state is 
traversed for justifying the question of satisfiability. It is well-known that the major problem in the automatic 
verification of the concurrent systems is the state-space explosion problem and various techniques have been 
developed in order to resolve state-space explosion problem, and various techniques have been developed in order 
to resolve state space explosion problem. These include the symbolic representation of state space through binary 
decision diagram (BDD)[3,5], the partial order methods[3,15] in which the unnecessary interleaving of transitions are 
suppressed or by applying abstraction and symmetries[2,5]. To reduce the complexity, systems may be decomposed 
into simpler systems, and similarly the specifications decomposition may also be achieved. The compositional 
verification[2,4] is one of the possible ways to deal with complexity. It exploits the hierarchical structure of systems 
and specifications through divided-and-conquer rule. A compositional verification requires the modal verification of 
a system through its constituent modules, the decomposed parts of larger system. These compositional techniques 
have been applied in the model checkers like SMV[10], and the Mocha system[12]. Such methods are originally 
defined in terms of assumption-guarantee paradigm in which each component of a system is specified in terms of 
assumptions it makes about its environment, and properties it guarantees about the behavior provided the 
assumption holds. 

Classically the composition of two systems P1 and P2 is specified as P1||P2 a system P, where constituents P1 
and P2 satisfy the “local” properties while their composition P satisfies “global” properties. Suppose P1 and P2 
satisfy the properties ψ1 and ψ2 respectively, and semantically we could represent as P1|=ψ1 and P2|=ψ2. The 
composition would satisfy ψ1∧ψ2=Ψ that is P=P1||P2|=Ψ. This kind of composition is sound for various 
specification languages and concurrency models, but it is often not helpful[16]. In Ref.[16], a compositional rule for 
“weak-until” is formulated as: 
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We discuss the assumption-guarantee specification along this line, and since the assumption-guarantee 
specification has natural interpretation in intuitionistic domain, we use intuitionistic linear-time μ-calculus (IμTL) 
as a specification framework. We formulate an assumption-guarantee rule in IμTL which is more general than the 
above rule formulated in LTL and therefore extends the usual discussion of assumption-guarantee for safety 
properties of the form ϕ,  and also those involving temporal operators like “weak-until” (as shown above) and 
“release”. 

The rest of the paper is organized as follows. In Section 2, we provide preliminaries regarding framework of 
intuitionistic linear-time µ-calculus, and semantic interpretation of IμTL. The compositional reasoning for 
assumption-guarantee specifications in intuitionistic domain is established in Section 3. In this Section we also 
discuss some applications of the rule for safety property of the form ϕ,  such that it establishes a circular 
reasoning rule for Moore machines. In Section 4 we have an overview of some related work, and in Section 5 we 
have concluding remarks. 
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2   Intuitionistic Linear-Time μ-Calculus 

Behavior and properties: Reactive systems maintain ongoing interaction with their environment, and thus 
produce computations i.e. infinite sequences of states. In order to analyze behavior of such systems we have some 
finite set AP={p,q,r,…} of observable propositions about the states, and its power set is represented as 2AP. We fix 
Σ={a,b,c,…} as a set of alphabets where each elements is a subset of AP, and Σ∞ is a set of non-empty words over 
Σ. The set Σ∞ is further divided into Σ* and Σω as the sets of finite length and infinite length words respectively. In 
context of discrete linear-time we take behavior as words of Σ∞. A power set of Σ∞ is given as P(Σ∞), while this set 
possesses order ⊆ with join (∪) and meet (∩) that is for all b1,b2∈Σ∞ then b1∪b2 and b1∩b2 exist. This constitutes a 
lattice Σ∞, while its power set forms a power set lattice given as P(Σ∞)=〈P(Σ∞),∩,∪〉. We designate the elements of 
this lattice as properties or languages. In general we define a temporal property as a language of infinite words. 

Set of infinite behaviors as Boolean algebra: We define a function fB:P(Σ∞)→P(Σ∞) which maps the language 
L such as fB(L)=L∩Σω that is a set of infinite behaviors in L. In general, a lattice is said to be complete if joins and 
meets of every subset of the set constituting a lattice exit and a lattice will be bounded of join and meet of empty set 
exist. The map fB:P(Σ∞)→P(Σ∞) is an endomorphism of the complete lattice P(Σ∞) if it is meet and join preserving 
that is for all L1,L2∈P(Σ∞) we have fB(L1∪L2)=fB(L1)∪fB(L2) and fB(L1∩L2)=fB(L1)∩fB(L2). The range of the function 
fB is denoted by RB, and is defined as RB={fB(L)|L⊆Σ∞}=P(Σω). Being an endomorphism RB induces a sublattice of 
P(Σ∞). The induced sublattice is given as ΛB=〈RB,∪,∩,−,∅〉, which is in fact a complete Boolean algebra, 
where-denotes the complement of the language L such that −L={ω∈Σω|ω∉L}. 

Prefix-Closed sets of behaviors as heyting algebra: We represent ≺  as the prefix order on Σ∞. For ω,u∈Σ∞, 

if u is a prefix of ω then u ω≺ , while ( ) { | }Hf u uω Σ ∞= ∈ ≺ω

H

. The mapping fH:Σ∞→P(Σ∞), maps a behavior Σ∞ to 

language (P(Σ∞)), while we could extend the domain of fH, and define fH:P(Σ∞)→P(Σ∞) which extends the behavior 
to language. By fH(L) we mean that ( ) ( )H L

f L f
ω

ω
∈

=∪ . We say that language L is prefix closed iff L=fH(L), the 

set of prefix closed languages. Despite of not preserving all meets RH induces a complete sublattice of P(Σ∞), which 
turns out to be a complete lattice of sets. Then ΛH=〈RH,∪,∩,⇒,Σ∞,∅〉 constitutes a complete Heyting algebra, i.e. 
for all languages L1,L2∈RH we have a language L∈RH known to be greatest language as L={ω∈Σ∞|fH(ω)∩L1⊆L2} 
such that L1∩L⊆L2. The language L is a relative pseudo-complement of L1 and L2 and is denoted as L1⇒L2. 

Linear-Time μ-calculus: The language of μ-calculus is formulated from propositions, standard Boolean 
connectives, least fixed point μ, greatest fixed point ν, and the temporal operator nexttime . The set of formulas :
Ωμ of the linear time μ-calculus (μTL) is defined by the following convention: 

:: | | | | | | | . | . |Z p Z ZμΩ ψ ϕ ψ ϕ ψ μ ψ ν ψ ψ ϕ= ⊥ Τ ∧ ∨ →: . 

We have formulas ϕ,ψ∈Ωμ, p ranges over atomic propositions, Z ranges over V={X,Y,Z,…}, the set of 
variables, μZ.ψ is the least fixed point for ψ and its corresponding counterpart for greatest fixed point is νZ.ψ, 
whereas the variable Z in μZ.ψ and νZ.ψ is in the scope of even number of negations. 

In linear-time μ-calculus we have bounded and free variables and the formulas with free variables are 
interpreted with respect to an environment ρ:V→P(Σ∞), which maps all free variables to ς⊆Σω. Variables in the 
μ-calculus can be either free or bounded by a fixed point operator, a formula is said to be closed if the formula 
doesn’t contain free variables. 

Classical semantics of μTL: The semantics of μTL is recursively established in an environment defined ρ 
in which variables are bounded. We define a classical interpretation function cI ρ  whose domain Ω μ  i s  a set of 

μTL formulae and which maps them over Boolean algebra i.e. :cI ρ
μ BΩ Λ→ . This function interprets the classical 

formula of linear-time μ-calculus, and is environment dependent. Let Ord be the set of ordinals. The classical 
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semantics of the set of μTL formulae under the interpretation function cI ρ  is given below as: 
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where the monotonic function nextc and cmunext ρ  are defined as nextc(L)=ΣL and [ / ]( . )( ) ( )L Z
c cmunext Z L Iρ ρλ ψ ψ=  

while L∈RB, and Σ be a set of alphabets. The representation λZ.ψ is an explicit dependence of formula over the 
variable Z, and this variable maps to a member of P(Σω) through environment ρ:V→P(Σω). Where the Σr is defined 
as Σr={q∈2AP|r∈q}. 

Intuitionistic semantics of μTL: Intuitionistic interpretation of semantics of μTL maps each formula into 
element in the Heyting algebra ΛH. This interpretation is designated as intuitionistic linear-time μ-calculus (IμTL). 
The interpretation function :iI ρ

μ HΩ Λ→  is defined below as: 
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Intuitionistic Monotonic functions: In establishment of intuitionistic variant of μTL for the formulation of 
intuitionistic linear-time μ-calculus (IμTL) we have corresponding functions nexti and imunext ρ , and are given as: 

Intuitionistic Monotonic nexti function: For Σ be a set of alphabets, and nexti be a monotonic function, then it 
generates language inductively as nexti(L)=Σ∪ΣL for L∈RH. In defining the language or properties we have Σ* and 
Σω as the sets of finite and infinite length words respectively and their superset is Σ∞. Therefore, the properties we 
are taking into consideration are only for non-empty words and so the monotonic function nexti is over a non-empty 
language. 

Intuitionistic Monotonic i
ρmunext  function: In this case we have language L∈RH, and the environment 

ρ:V→P(Σ∞), the monotonic function imunext ρ  is defined as: 
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[ / ]( . )( ) ( )L Z
i imunext Z L Iρ ρλ ψ ψ=  

The monotonic function imunext ρ  specifically used to interpret the fixed points dependence of a formula, but 

in general it interprets the variable dependency of certain linear-time µ-calculus formula, and its substitution. 
Expressiveness: Besides the difference in the semantic domains, the classical and intuitionistic semantics 

interpretation functions differ in interpreting negation, implication, and next operator. These differentiations mainly 
depend upon the interpretation of IμTL over Heyting algebra while μTL is defined over Boolean algebra. 

The sets of behaviors in different logics are compared in order to expedite the comparative expressive power of 
μTL and that of IμTL. The formulas in the μTL are interpreted over Boolean algebra ΛB, while the formulas of IμTL 
are interpreted over ΛH, the Heyting algebra. Therefore, we cannot compare them directly; rather their 
corresponding carriers may be compared. As fB:P(Σ∞)→RB and fH:P(Σ∞)→RH, we may compare the semantics in 
Boolean algebra ΛB by restricting the intuitionistic semantics to infinite words through fB, and then by extending the 
classical semantics into prefixed closed set through fH for comparison in Heyting algebra ΛH. 

Definition 2.1. A formula is in a negation normal form (NNF) if it does not contain implication or equivalence, 
and negation is applied only to atomic propositions. 

Suppose ϕ be a closed formula, then both the interpretation functions ( )cI ρ ϕ  and ( )iI ρ ϕ  in classical domain 

and in the intuitionistic domain respectively do not depend on ρ. Then we write Ic(ϕ) and Ii(ϕ) for semantics of the 
closed formulas. Below is a proposition which relates the formulas in NNF for semantics in Boolean and Heyting 
algebra[13]. 

Proposition 2.2. If ψ is a closed formula in NNF then Ic(ψ)=fB(Ii(ψ)). 
The position 2.2 reflects that IμTL is as least expressive as μTL, since every formula in the classical 

interpretation corresponds to a formula in NNF, and the deducibility of formula in prefixed closed set is completely 
expressible in the µTL domain of infinite behaviors. 

Satisfiability with respect to a model: A transitional relation among state of a behavior is usually defined 
through Kripke structure. A Kprike structure over a set of atomic propositions AP is a tuple M=〈S,R,I,L〉 where S is a 
set of states, R⊆S×S is a transition relation, I⊆S is a set of initial states, and L:=S→2AP is a labeling function. A path 
in M is a finite or infinite sequence of states such that if s, t are two consecutive states in the sequence then (s,t)∈R. 
For a finite path π=π0,π1,π2,…,πk, the string of labels over π is L(π0)L(π1)…L(πk). A string over infinite path is 
similarly defined. Let [[M]] be the set of strings over all paths of M starting from I. Let ϕ be a safety formula then 
M|=Iϕ iff [[ ]] ( )iM I ρ ϕ⊆ . When restricting to infinite behaviors, this definition coincides with the traditional 

interpretation of satisfiability. The satisfiability symbol |=I indicates that the model M is satisfied under the 
intuitionistic interpretation. 

3   Intuitionistic A-G Specifications 

Assumption-guarantee specifications are pair of formulas in some temporal logic. Informally, a component of a 
system satisfies assumption-guarantee specifications, if the component satisfies the guarantee ψ at least as long as 
its environment meets assumption ϕ. This specification is sometimes written as ϕ⇒ψ. In a composed system that is 
one satisfies ϕ⇒ψ while other ψ⇒ϕ, this implication has some problem depicted in Ref.[6]. The solution proposed 
in Ref.[11], while this formulation is elaborated and extended in various contexts in Ref.[8]. By making use of 
linear-temporal logic of Manna and Pnueli[9] the solution to composition has been proposed in Ref.[6] with aspect of 
formulation concerning the handling of assumption-guarantees with internal handling, which simply are existential 
quantified variables in LTL. 

In context of Heyting algebra of prefix-closed sets of finite behaviors, it has been illustrated in Ref.[8] for a 
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suitable notion of concurrency an assumption-guarantee specifications ϕ ψ+⎯⎯→  corresponds to an intuitionistic 

implication ϕ ψ⎯⎯→ . This gives rise to composition rules based on conjunction of intuitionistic implication. 

Afterwards a more general interpretation of the operator +⎯⎯→  is provided in Ref.[7]. The interpretation again can 
be reduced to intuitionistic implication. The interpretation of the operator +⎯⎯→  over Heyting algebra ΛH of 
prefix-closed set is given as for ϕ,ψ∈Ωμ: 

j( ) { | ( ) : ( ) ( ) (i H H iI f f I impl )}iies Iϕ ψ ω Σ ν ω ν ϕ ν ψ+ ∞⎯⎯→ = ∈ ∀ ∈ ⊆ ∈ , 

where j( ) :H Hf Rν Σ ∞ →  maps behaviors to their sets of proper prefixes i.e. j( ) ( ) \ { }H Hf fν ν ν= . The connective 
+⎯⎯→

)
 introduced in Ref.[7] has interpretation as: 

( ) (( )i iI Iϕ ψ ψ ϕ+⎯⎯→ = → →ψ . 

Hence in ΛH, A-G specifications are merely short hands for intuitionistic implication. The circular dependency 
of assumption-guarantee specifications is treated in Ref.[7], and concise soundness proofs of various proof rules 
regarding circular dependent assumption-guarantee specifications are established. The composition rules for 
assumption-guarantee specifications are that they essentially only admit circular dependencies on safety properties. 

We represent syntactically ϕ ψ�  to denote the property that under assumptions ϕ, the property ψ is 
guaranteed. In intuitionistic linear-time μ-calculus framework the safety formula for assumption (A) ϕ and 
guarantee (G) ψ, | IM ϕ ψ= �  is the same as | ( )IM ψ ϕ= → →ψ  in which (ψ→ϕ)→ψ is an IμTL formulas. For 
brevity, we still write ϕ ψ�  as an abbreviation for the corresponding IμTL formula when discussing A-G 
specifications. 

3.1   A-G specifications semantics 

A circular composition rule that one would like for the system P=P1||P2 would be that if P1 satisfies the 
property 2 1ϕ ϕ�  and P2 satisfies property 1 2ϕ ϕ�  then P satisfies ϕ1∧ϕ2. However, because of the circularity of 

each component making assumptions about the other components yet to be proven guarantees, such rules are hard to 
construct and are in fact sound only for some special classes of properties. 

Definition 1. A model M satisfies A G� , denoted by | IM A G= � , is defined in the intuitionistic semantics as 

[[ ]] ( ) , [[ ]] ( )k i
i iM I A implies i k M I Gρ ρΣ Σ∩ ⊆ ∃ > ∩ ⊆ . 

In the classical domain the assumption-guarantee specifications in context of safety property reflects that 
guarantee to be satisfied upto time instant k+1 whenever the assumption is satisfied upto time instant k. In case of 
fixed point interpretation in Ref.[16] the interpretation is only for a single trace and over the fixed points of 
assumption and guarantee specifications. In our semantic definition we have a set of traces for assumption and 
guarantee, while guarantee has to satisfy at some later state not necessarily to the very successive of k, the trace 
instant of assumption. 

3.2   Composing A-G specifications 

In this section, we describe the inference rule for composing A-G specifications in intuitionistic domain. The 
inference rules established in Ref.[16], require the conditions that (i) if the global assumption is satisfied currently 
and one of the local guarantees is satisfied eventually, then the other local assumption is satisfied eventually, (ii) if 
the local guarantee holds then the global guarantee holds eventually, and (iii) if the global assumption is satisfied, 
then one of the local guarantee holds eventually. Intuitively, we have the same inference rules but our intuitionistic 
interpretation through Heyting algebra of prefixed closed set deals not only to a single trace or a string rather a set 
of strings. 

We have a composed system with assumption and guarantee specifications given by Φ and Ψ respectively, 
while its constituents having sets of assumption and guarantee specifications as ϕ1,ψ1 and ϕ2,ψ2 respectively under 
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1model M. Therefore, for 1| IM ϕ ψ= �  and 2| IM 2ϕ ψ= �  we have the respective interpretations as: 

1 1[[ ]] ( ) ,  [[ ]] ( )l k
i iM I implies k l M Iρ ρΣ ϕ Σ ψ∩ ⊆ ∃ > ∩ ⊆ , 

2 2[[ ]] ( ) ,  [[ ]] ( )l k
i iM I implies k l M Iρ ρΣ ϕ Σ′ ′′ ′∩ ⊆ ∃ > ∩ ⊆ ψ . 

To which similar interpretation may be given for their composed system | IM Φ Ψ= � . 
Let ϕ,  stands for always ϕ. In standard discussion of compositional rules for safety properties, typically a 

rule is formulated to deduce 1 2|| | IM M Φ Ψ= , �,  from 1 1| IM 1ϕ ψ= , �,  and 2 2| IM 2ϕ ψ= , �,  provided that 

certain relations on Ψ,ψ1,ψ2,Φ,ϕ1,ϕ2 holds. Our aim is to develop a more general rule in order to provide a wider 
basis for compositional reasoning. This is done in two steps as follows. 

Theorem 3.1. Let  represent k times  (with k≥1). The following inference rule is sound. k: :
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Proof:  We prove that for k=1. The other cases are similar. Let σ be a trace of M. If ψ1 does hold at all of σ, 
then positions according to premises both of ψ11 and ψ21 do not hold. Therefore ψ12 and ψ22 holds at all 
positions. Therefore, 1

2 1( .( ( )))Z Zν ψ ψ∧ ∨:  holds. If ψ1 holds at some positions of σ, and let i be the first one of 

such positions. Then according to the premises both of ψ11 and ψ21 do not hold before position i. Therefore ψ12 and 

ψ22 hold at all positions before and on position i. Therefore 1
2 1( .( ( )))Z Zν ψ ψ∧ ∨:  holds. 

Theorem 3.2. The following inference rule is sound. 
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= ∧ ∨ ∧ ∨

= ∧ ∨ ∧ ∨
∨ =
∨ =

∧ ∧ = ∧
∧ ∧ = ∧

: � :

: � :

2 1 2 1

_______

| ( .( ( ))) ( .( ( )))k k
IM Z Z Z Zν ϕ ϕ ν ψ ψ= ∧ ∨ ∧ ∨: � :

 

Proof:  Let 2 1( .( ( )))k
i i iZ Zϕ ν ϕ ϕ′ = ∧ ∨:  and 2 1( .( ( )))k

i i iZ Zψ ν ψ ψ′ = ∧ ∨: . For each trace of M, at the first 
state, we have ψ12,ψ22, since there is some i>0 such that [[M]]∩Σi is a subset of the interpretation of 1ψ ′  and that of 

2ψ ′ . Then we have ψ2 and therefore there is an i>0 (more specifically i=1) such that [[M]]∩Σi is a subset of the 

interpretation of 2 1( .( ( )))kZ Zν ψ ψ∧ ∨: . 

Suppose [[M]]∩Σ1 is a subset of the interpretation of 2 1( .( ( )))kZ Zν ϕ ϕ∧ ∨: . Then for each trace M,ϕ2 holds 

at the first state. We have two cases. One is that ϕ1 also holds. The other is that it does not hold. 
In the former case, we have ϕ11,ϕ21, and then it follows from Theorem 3.1. 
In the later case, we have ϕ12,ϕ22, since we have ψ12,ψ22 and ϕ2. Then [[M]]∩Σ1 is a subset of the interpretation 

of 1ϕ′  and that of 2ϕ′ . Then [[M]]∩Σk is a subset of the interpretation of 1ϕ′  and that of 2ϕ′ . 
Then there is an i>k, such that [[M]]∩Σi is a subset of interpretation of 1ψ ′  and that of 2ψ ′ . Therefore for each 

trace of M, at (k+1)st state, we have ψ12,ψ22. 
Similar to the reasoning as when we were at the first state, we obtain that [[M]]∩Σk+1 is the subset of the 
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interpretation of 2 1( .( ( )))kZ Zν ψ ψ∧ ∨: . Continuing the similar reasoning process to that we were at the first state, 

we obtain 2 1 2 1| ( .( ( ))) ( .( ( )))k k
IM Z Z Zν ϕ ϕ ν ψ ψ= ∧ ∨ ∧ ∨: � : Z . 

3.3   Composition of models 

Parallel compositions in many frameworks are interpreted as intersection of behaviors[14,16], the composition of 
specifications can as well be applied to the composition of models. The following compositional rule can be 
deduced from Theorem 3.2. 

1 12 11 12 11

2 22 21 22 21

11 21 1

12 22 2

1 12 22 11 21

2 12 22 12 22

| ( .( ( ))) ( .( ( )))

| ( .( ( ))) ( .( ( )))
( ) |
( ) |
( ) |
( ) |
________________________________________

k k
I

k k
I

M Z Z Z Z

M Z Z Z Z

ν ϕ ϕ ν ψ ψ

ν ϕ ϕ ν ψ ψ
ψ ψ ψ
ψ ψ ψ
ϕ ψ ψ ϕ ϕ
ϕ ψ ψ ϕ ϕ

= ∧ ∨ ∧ ∨

= ∧ ∨ ∧ ∨
∨ =
∨ =

∧ ∧ = ∧
∧ ∧ = ∧

: � :

: � :

1 2 2 1 2 1

_________

|| | ( .( ( ))) ( .( ( )))k k
IM M Z Z Z Zν ϕ ϕ ν ψ ψ= ∧ ∨ ∧ ∨: � :

 

The rule extends the discussion for safety properties of the form ϕ,  and the rule for “weak-until” as 
described in the introduction. A special case of this rule for safety property of the form ϕ,  is as follows. 

Corollary 3.3. The following rule is sound. 

1 1 1 2 2 2

1 2 2 1 1 2

1 2

| |
| ( ) | ( ) ( ) |

____________________________________________
|| |

I I

I

M M

M M

ϕ ψ ϕ ψ
Φ ψ ϕ Φ ψ ϕ ψ ψ Ψ

Φ Ψ

= =
= → = → ∧ =

=

, �, , �,

, �,

 

This corollary is obtained by replacing k with 1 in the above rule, ϕ12, ϕ22, ψ12 and ψ22 with ϕ1, ϕ2, ψ1 and ψ2 

respectively, whereas ϕ,  stands for .( )Z Zν ϕ ∧: , thus, in constitution of 1 1| IM 1ϕ ψ= , �,  we have ϕ11 and ψ11 
as false in the above parallel composition rule, and similarly for 2 2| IM 2ϕ ψ= , �,  we have same setting for ϕ21 

and ψ21. Next, we discuss the application of this rule to composition of Moore Machines. 
Composition of Moore machines: Consider a semantic setting of trace tree with Moore machine defining a 

programming model. We derive compositional rule for Moore machine with synchronous composition. For this first, 
we present some basic concepts. 

Three structures as prefix closed sets: Let N={0,1,2,…} be a set of all natural numbers then a (finite or 
infinite) tree is a set τ⊆N* such that if xn∈τ, for x∈N* then xm∈τ, for all 0<m<n. The elements of τ represents 
nodes: the empty string ε is the root, and for each x. The nodes of the form xn∈τ for n∈N, are the children of a node 
x. The edges of the tree are pairs 〈x,xn〉, where x,xn∈τ. The number of children of node x is degree of the node, and 
it is denoted as deg(x). A tree τ is finite if the set τ is finite; otherwise τ is said to be infinite. The set of finite 
branches and infinite trees is denoted by . A node x∈τ is said to be a depth |x|, where |x| denotes the length of N

fT

string x. For a tree τ, the subtree rooted at x∈τ, is the tree τ|x={i|xi∈τ}. 
Given sets A and B, an 〈A,B〉-labeled tree is a triple ˆ , ,τ τ λ δ= 〈 〉 , where τ is a tree λ:τ→A is a labeling function 

that maps each node of the tree to an element of A, and δ:τ×τ→B is a function that labels each edge 〈x,xn〉 in τ with 
δ(x,n)∈B. Given a labeled tree τ̂ , the labeled tree rooted at x is ˆ | | , ,x xτ τ λ δ′ ′= 〈 〉  where λ′(y)=λ(xy), and 

δ′(y,n)=δ(xy,n). 
Moore machines: A Moore machine is a state transition system with input and output ports. Transition depends 

on the current state and the current values of the input ports. The transition relation must be non-terminating that is 
for each state and all possible input values there is at least one successor state, but need not to be deterministic. The 
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value of each port only depends on the current state, but independent of the current input values. 
Definition 3.4 (Moore machines). A Moore machine is a tuple P=〈S,so,I,O,L,R〉 where 
• S is the set of states, 
• so∈S is initial state, 
• I is the set of input propositions, 
• O is the set of output propositions disjoint from I, 
• L:S→P(O) is a function that labels each state with the set of output propositions true in that state, and 
• R⊆S×P(I)×S is the transition relation. 

The state space of a Moore machine is a non-empty set as it contains a non-empty subset of initial states. We 
do not require finite non-determinism that is the set of initial states may be finite and for all states s∈S and all 
inputs i∈I, the set of successor states may be infinite. We are interested in the non-blocking machines, a condition 
which is necessary for compositional techniques such as assume-guarantee reasoning[1]. A machine is non-blocking 
if every state has a successor; that is for all so∈S and i⊆I, there exists a state t such that R(so,i,t). For P be a Moore 
machine, we call t be a trace of P if there is r∈S* such that r is a run of t in P, while we define the trace language of 
P as a set of all traces of P. In linear-time semantics for Moore machines the language as the set of finite words 
which it generates or accepts, while this language is prefixed-closed. 

Let P=〈S,so,I,O,L,R〉 be a Moore machine. Let ϕ be a safety property with atomic propositions in O. P|=Iϕ iff 
for every trace tree ˆ , ,τ τ λ δ= 〈 〉  of P, and for every x∈τ, λ(xo),λ(x1),…,λ(xk)⊆Ii(ϕ) where xo=ε, xk=x and xi is the 
prefix of x with length i. Then we have the following theorem. 

Theorem 3.5. For Moore machines P and Q such that P||Q exits, the following rule is sound. 

1 1

2 2

1 1

|
|

_______________
|| |

I

I

I

P
Q

P Q

ϕ ψ
ϕ ψ

ψ ψ

=
=

=

, �,
, �,

, �,

 

This rule is deducible from Corollary 3.3 by letting ψ1=ϕ2, ψ2=ϕ1, ϕ=true, ψ=ψ1∧ϕ1. We have ϕ|=(ψ1→ϕ2), 
ϕ|=(ψ2→ϕ1), and ψ1∧ψ2|=ψ. 

Discussion: Viswanahans, et al.[16] generalize assume-guarantee specifications. They adopted least and greatest 
fix points of ω-continuous, and ω-co-continuous functions on properties, respectively, where properties are set of 
computations. They define the assume-guarantee operator via the chain of iterative approximations that converges to 
fix point. The authors present a number of generic rules for composing assumptions-guarantee representation are 
least or greatest fix points-truly circular rules are possible only when the assumptions are confined to greatest fix 
point. They show the generality of their rules by proving several known assumption-guarantee rules, one for LTL, 
and one for trace containment of Moore machines to be special instance of their rules. In Ref.[14], Henzingner et al. 
proved soundness of circular rules for Moore machines with simulation as refinement. They require their machines 
to be finitely non-deterministic, which implies that simulation is equivalent to trace-tree containment. The 
assumption-guarantee specifications in intuitionistic interpretation is quite general, and it extended the discussion 
for safety properties of the form ϕ,  and the temporal operators like “weak-until” and “release” for assumption- 
guarantee specifications become the subcases of our establishment rule. It also indicates that the intuitionistic way 
of representing assumption-guarantee is convenient and the compositional principle with intuitionistic linear-time 
μ-calculus can be applied to specific computational model to obtain relevant circular reasoning principle. 
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4   Related Work 

Assumption-guarantee techniques have a wide range of applications. In Ref.[20], it is used in constructing 
building blocks for specifications which contains inputs, outputs, external variables. Assumptions about the inputs 
that they rely upon the goals that they guarantee to achieve, and to build more complex specifications one could 
continue to use systems specified in the same way, but with more complex rely and guarantee conditions. 
Alternatively[20] provides operators such as conjunction and until-requires to combine system specifications. In 
Ref.[17], an assumption-guarantee technique is used to specify module behaviors for distinguishing between input 
and output (input assumption and output guarantees) such that a solution formula for submodule construction is 
given. The problem of submodule construction or equation solving for module composition has some important 
applications for the real-time control systems, communication gateway design, and component re-use for system 
design in general[17]. In Ref.[21], assumption and guarantees are explicitly separated to increase the modeling power 
of the specification language, in order to propose an interface theory for networks of distributed asynchronous 
components modeled as input-enabled I/O automata. Assumptions and guarantees about a given component into 
different automata though each interface consists of an environment and specification. A significant advantage of 
composite interfaces is that one of the parts can be changed without changing the output part. Assumption-guarantee 
reasoning is a modular formal analysis technique that uses assumptions when checking components in isolation[19]. 
The success of compositional reasoning depends on discovering appropriate assumptions for all the components so 
that assumption checking phase will succeed, while a fully automated framework for assumption-guarantee based 
composition reasoning by automating decomposition has been developed in Ref.[18]. In Ref.[22], an approach for 
integrating assume-guarantee verification at different phases of system development is proposed, in order to address 
the scalability issues associated with the verification of complex software systems. The soundness theorems for 
compositional reasoning rules depend on underlying computational models and can be very involved[23]. In 
Ref.[23], a proof-theoretic approach for establishing soundness of rules in automated compositional reasoning is 
developed. 

5   Concluding Remarks 

We have proposed dealing with assumption-guarantee specifications in the intuitionistic domain, and we have 
formulated as assumption-guarantee rule for composition of safety properties with IμTL formulas. For the first the 
assumption-guarantee specification has a natural interpretation in intuitionistic domain such that IμTL is a natural 
framework for this kind of specifications. For the second, the rule we have formulated is more general than 
previously proposed rules that use LTL formula in specification of assumption and guarantee applications, for 
instance, for supporting circular compositional reasoning. 
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