
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.20, No.8, August 2009, pp.2102−2112 http://www.jos.org.cn
doi: 10.3724/SP.J.1001.2009.00568 Tel/Fax: +86-10-62562563
© by Institute of Software, the Chinese Academy of Sciences. All rights reserved.

基于BPEL的Web Service组合的数据流分析测试方法
∗

董文莉 1+, 胡建华 2

1(中国科学院 软件研究所,北京 100190)
2(淮海工学院 现代教育技术中心,江苏 连云港 222005)

Test Method for BEPL-Based Web Service Composition Based on Data Flow Analysis

DONG Wen-Li1+, HU Jian-Hua2

1(Institute of Software, The Chinese Academy of Sciences, Beijing 100190, China)
2(Modern Education Technology Center, Huaihai Institute of Technology, Lianyungang 222005, China)

+ Corresponding author: E-mail: wenli@iscas.ac.cn

Dong WL, Hu JH. Test method for BEPL-based Web service composition based on data flow analysis.
Journal of Software, 2009,20(8):2102−2112. http://www.jos.org.cn/1000-9825/568.htm

Abstract: As the Web Service composition becomes complex, testing to ensure their quality and reliability
become crucial. This paper extends traditional data flow analysis to Web Service composition testing. A test method
for BPEL-based Web Service composition based on data flow analysis is presented. The test method is based on a
test model called WSCTM that captures data flow test artifacts of Web Service composition. With the considerations
of the intra-activity, intra-service, and inter-service, testing for Web Service composition based on data flow
analysis can be accomplished in three levels, and various flow graphs are used to describe the interaction within and
between services in structure model. The def-use chains of the Web Service composition can be obtained based on
above analysis method. As a result, test paths can be selected to satisfy given criteria in order to achieve a desired
Web Service composition test coverage.
Key words: Web service; business process execution language for Web services; Web service composition;

software testing; data flow analysis

摘 要: 随着 Web Service 组合变得越来越复杂,通过测试来保证服务质量和可靠性也变得越来越重要.将传统数

据流分析方法扩展用于 Web Service 组合测试,提出了一种基于 BPEL 的 Web Service 组合的数据流分析测试方法.
该方法基于一个测试模型:Web Service 组合测试模型 WSCTM,该测试模型可以捕获 Web Service 组合的数据流接

口.采用基于服务的模型 WSCTM,数据流可以从 3 个视点来分析:服务间、服务内和服务实现构件间.从而,Web
Service 组合的数据流测试可以在三层上得到实现.基于以上方法,可得到 Web Service 组合的定义-使用链,最终可产

生满足既定测试标准以获得需求 Web 服务组合质量要求的测试路径.
关键词: Web 服务;业务流程执行语言;Web 服务组合;软件测试;数据流分析
中图法分类号: TP311 文献标识码: A

∗ Supported by the National High-Tech Research and Development Plan of China under Grant Nos.2007AA01Z190, 2007AA010601

(国家高技术研究发展计划(863))
Received 2008-01-29; Accepted 2008-08-21

董文莉 等:基于 BPEL 的 Web Service 组合的数据流分析测试方法 2103

1 Introduction

With the extraordinary growth of distributed yet coordinated service-oriented frame work that can be directly
or dynamically composed of Web Services through work-flow, the business process language for Web Services
(BEPL, business process execution language for Web services)[1] is emerged for specifying and executing workflow
specifications for Web Service composition invocation. Testing Web Service composition is considered a more
challenging task than testing traditional program. Existing traditional software test methods have been found to be
inadequate for Web Service composition testing[2−7]. The dynamical, heterogeneous, re-composite even during
runtime, concurrent, and distributed nature makes Web Service composition difficult to understand and test. In
addition, the technical complexity of Web Service composition, such as dynamical selection/re-composition, makes
Web Service composition testing a more challenging task.

Recently, several tools and techniques of model checking over Web Services are discussed to verify the Web
Service composition[8−14], aiming at guaranteeing discovering deadlock on services level etc. These studies employ
different models, utilize different model checking approaches[8−11], or check different types of properties[12,13]. A
common theme of existing approaches is that they treat atomic Web Service as black box. However, if the internal
structure of Web Service is blank in the model specification, it is inherently hard to describe and check more
delicate properties involving the effect and output of Web Service. It is insufficient to ensure the quality of Web
Service composition without exercising its feasible paths without using structural test techniques (i.e., white-box
testing). Therefore, to ensure correct data interactions and to provide sufficient test coverage, we extend one of the
structural test techniques, data flowing testing, to Web Service composition testing.

Data flow testing is a commonly used structural test technique for guiding the selection of test paths based on
the data flow information of programs[14−16]. It has been reported that test criteria based on a program’s data flow
information can provide more adequate coverage than other structural test criteria, such as statement and branch
criteria[17−19]. Moreover, empirical studies show that data flow testing is useful and promising in terms of cost
saving and fault detection for complex program[20,21].

Existing data flow test techniques mainly study the data information of program variable and can be applied to
individual functions and their interactions[15,16,18−20]. However, Web Service composition allows data to be stored in
BPEL/WSDL document and services can be requested/provided dynamically so the role of provider and requestor is
changed dynamically, and services can be re-composed during run-time. This introduces new data interactions.
Furthermore, message correlation is introduced in BPEL mechanism, a BPEL defines correlation consisting of
properties and enumerates the properties, and then references that set in activities. Thus, to test Web Service
composition, data flow analysis needs to be extended to consider BPEL/WSDL documents and to cross the
provider/requestor boundaries specified by traditional SOA model.

The rest of this paper is organized as follows. Section 2 presents a test model to represent the data flow test
artifacts of Web Service composition. Section 3 proposes Web Service composition testing based on data flow
analysis. Based on the method proposed in this paper, the analysis for an Automatic Transition Machine (ATM)
application is presented in section 4 to illustrate our approach. Section 5 is the conclusion of the paper and possible
future work on Web Service composition testing.

2 The Web Service Composition Test Model

Data flow analysis is concerned with the proper use of data in a program. In traditional program, data are
stored in program variables. In Web Service composition, however, data can be stored not only in program (service
implementation) variables but also in WSDL/BPEL documents transported from one service to another service or

2104 Journal of Software 软件学报 Vol.20, No.8, August 2009

one operation to another operation. Therefore, traditional data flow techniques need to be extended to consider
WSDL/BPEL documents that play an important role in Web Service composition.

In addition, the heterogeneous implementations of Web Service as well as the dynamic composition and
re-composition make it difficult to locate and compute the data flow information of Web Service composition.

Furthermore, in traditional programs, the inter-procedural data flow analysis that is used to obtain the data flow
information is based on the calling relations between the procedures. For Web Service composition, however, the
data can be interacted in activities. Thus, to obtain the data interaction information between the Web Services, a
more precise data flow analysis is needed.

WSDL/BPEL document is the basis of Web Service composition testing based on data flow analysis. WSDL is
an XML encoded document describing networked services as a set of operations on messages specified by
Schema[22]. Each step in the process defined by BPEL is called by a basic activity or structure activity. The WSCTM
include various flow graphs so that different types of data flow test artifacts can be captured based on WSDL/BPEL.
In particular, to represent the test artifacts, the WSCTM employs two models: the service model and the structure
model. The service model crosses the provider/requestor boundaries, clearly describes Web Service composition in
terms of service relationships based on the data interaction, and various flow graphs are used to describe the
interaction within and between services in structure model.

2.1 The service model

The service model is used to describe Web Service composition in terms of service relationships based on the
data interaction. In the service model, each entity of a Web Service composition is modeled as a service consisting
of operations and variables. To facilitate the capturing of data flow information, the components of a service model
are classified into three types: request implementation, Web Service finder, and activity (basic and structure). Each
of them is defined as follows:

Definition 1. A request implementation is a script or program etc. that can send a request to a Web server.
Definition 2. A Web Service finder is a Web Service to provide the necessary access information of requested

Web Service (e.g., location, name, function).
Definition 3. Activity is component that can be composed together to build a Web Service composition, that is,

the basic activities and structure activities specified in BPEL.
To depict service and their interdependent relationships, a Service Relation Diagram (SRD) is employed. In

particular, a SRD=(V,E) is a directed graph, where V is a set of nodes representing the services, and E⊆V*V is a set
of edges representing the relationships between services. Moreover, to provide different levels of abstraction and
detail, the SRD allows recursive definitions for service composition so that a complicated service composition can
be represented hierarchically.

In addition, the relationships among services are classified into six types: inheritance, association, navigation,
redirect, request, and response. The inheritance and association are similar to those of object-oriented program, to
indicate the relationship between the parent service and its children service. The navigation, redirect, request, and
response relationships are special types of association relationships that are introduced by service link or posed by
Web Service composition based on BPEL. They are defined as follows.

Definition 4. EReq⊆V*V is the set of direct edges representing a request between a request implementation and
a Web Service finder. For any two services v1,v2∈V, (v1,v2)∈EReq indicates that the Web Service finder v2 is
requested by the request implementation v1.

Definition 5. ERs⊆V*V is the set of directed edges representing a response between a request implementation
and a Web Service finder. For any two services v1,v2∈V, (v1,v2)∈ERs indicates that the Web Service finder v1

董文莉 等:基于 BPEL 的 Web Service 组合的数据流分析测试方法 2105

responses the request of the request implementation v2.
Definition 6. EN⊆V*V is the set of directed edges representing a navigation relation between two request

implementations. For any two services v1,v2∈V, (v1,v2)∈ERs indicates that there is a navigation link from the request
implementation v1 to the request implementation v2.

Definition 7. ERd⊆V*V is the set of directed edges representing a redirect relation between two service finders.
For any two services v1,v2∈V, (v1,v2)∈ERs indicates that the service finder v1 redirect a request (via SOAP, HTTP,
FTP etc.) to the service finder v2.

Figure 1 shows the SRD for the ATM process described in Fig.4.

withdrawSF
Withdra
wreque
stimple

depositSFDepositrequ
estimple

logonSFLogonreq
uestimple

Connectreq
uestimple ConnectSF

disconnectSF

disconnectSF

disconnectSF

disconnectSF

Navigation

Navigation

Navigation

Association

Association

Association

Association

Request/response

Request/response

Request/response

Request/response
Redirect

Fig.1 SRD for ATM process

A scenario, is that a user can deposit an amount of money by sending a request using request implementation
depositrequestimple. The request implementation depositrequestimple logon the ATM transaction system server by
navigating to the request implementation logonrequestimple, and the request implementation logonrequestimple
connect network by navigating to the request implementation connectimple. The Web Service finder connectSF
provides the relevant information of connect activity and ask the connect activity to accomplish the connect
function and assign the message connected by sending a response to request implementation Connectrequestimple.
Then, The Web Service finder logonSF provides the relevant information of logon activity and ask the logon
activity to accomplish the logon function and assign the message logonedon by sending a response to request
implementation logonrequestimple. If logon is successful, the Web Service finder depositSF provides the relevant
information of service and the request implementation depositrequestimple invokes deposit activity and ask the
deposit activity to accomplish the deposit function and assign the message operationRsp by sending a response to
request implementation depositrequestimple.

In addition, to illustrate the relationship redirect defined in Definition 7, we can add an extra line in ATM
process description as shown in Fig.4:

〈sequence name=“redirectseq”〉 〈invoke partnerLink=“atmFrontEnd” portType=“tns:atmServicePT” operation=
“deposit” variable=“operationReq”/〉 〈invoke partnerLink=“atmFrontEnd” portType=“tns:atmServicePT” operation=
“withdraw” variable=“operationReq”/〉 〈/sequence〉

Figure 1 shows the case where a dashed arrow is used to indicate redirect relationship.
The service model can help testers understand the heterogeneous structures of Web Service composition. In

2106 Journal of Software 软件学报 Vol.20, No.8, August 2009

addition, by modeling the entities of a Web Service composition as services, WSDL/BPEL documents can be
integrated with the implementation so that the data flow information of the Web Service composition can be
obtained in a consistent way. At the same time, the relationships among the services can also help testers identify
the data interactions among interaction services and to compute the data flow information accurately.

2.2 The structure model

As mentioned in Section 2.1, the components of a service model are classified into three types: request
implementation, Web Service finder, and activity. Correspondingly, the data interaction should be intra-activities,
intra-services, and inter-service. The structure model is used to capture the data flow information of a Web Service
composition. To capture the data flow information, three types of flow graphs are employed in the structure model.
These flow graphs are described as follows:

Intra-Activity Control Flow Graph
The intra-activity control flow graph (ICFG) is used to describe the data flow information involving more than

one operation. The intra-activity control flow arises from the operation calls while the intra-activity control flow is
the process arrangement specified by BPEL basic activities. I.e., in ATM Web Service composition, for operation
logon, the operation connect will be called, this will generate intra-activity control flow. The def-use chains for a
variable that is defined in one operation and used in other operations can be obtained from ICFG.

Service Control Flow Graph
In Web Service composition, a user event may trigger a set of basic activities. We incorporate concurrent

summarizing technique[23] into our analysis. Depending on the user’s interactions, different event triggering
sequences can result in various structure activities. Since the global variables can be defined or used by any
operations within the services, different basic activities can result in different def-use chains for the variables of
interest. Therefore, to ensure correct data interactions, it is necessary to compute the def-use chains associated with
different basic activity invocation sequences.

To obtain the def-use chains as resulted from different structure activities, a service control flow graph (SCFG)
is employed. The SCFG is constructed by connecting together all ICFGs of the operations within the service by
structure activities. As shown in Fig.2, an extra node loop is connected to the nodes indicating operation logon, and
status representing a selection. And an extra node loop is connected to the nodes indicating operation deposit and
withdraw representing the alternative. This means after operation connect, which is executed once prior to other
operation, then the process is connected to the loop node and direct the recycling execution of selective operation,
logon and status, so does the node logon.

Connect

LogonStatus

WithdrawDeposit

Logoff

DisconnecrLoop

Loop

Fig.2 An example of SCFG

The SCFGs of different structure activities are shown in Fig.3[24]. The construction of the SCFG needs
connecting the corresponding end node to the entry node satisfying pre-condition when p-use is marked on the

董文莉 等:基于 BPEL 的 Web Service 组合的数据流分析测试方法 2107

edger.

Otherwise

P2P2 ready

Switch

Pick

P2

Flow

In
P1 Finish

Sequence

P1 FinishP1 done

P1 repeat
While

P2P2 ready Finish

1

1
P1P1 ready

P2 ready

In

1 1

In

Finish

P2

Finish

Source
activity

Target
activity

Link

In
Link=cond Link

Finish

 if/elseif/else

if process

Finish

In

1

Finish

P-use(condition,(m,n))

P-use(onmessage1,(i,j))

P-use(onmessage2,(i,j))
P-use(condition,(i,j))

P-use(!condition,(m,n))

P-use(condition,(i,j))

P-use(condition,(m,n))

Finish

elseif
process

else
process

P1 FinishP1 done

P1 repeat

In

P-use(condition,(i,j))

P-
use(!condition,(m,n))

repeatUntilIn
P1

N times

Finish

forEach

Fig.3 SCFG of different invoking sequences

Composite Control Flow Graph
One characteristic of Web Service composition is that an operation defined in a Web Service can be specified

to an operation defined in another Web Service organized by BPEL. Thus, a message can be defined in one Web
Service and used in another Web Service. However, in traditional program, no direct calling direction between the
embedded functions across the program package and, hence, they cannot be used to capture this kind of data
interaction. Therefore, to describe the data flow information between services, the composition control flow graph
(CCFG) is introduced. Correlation Sets also are described in this graph to ensure the message correlation.

3 Testing for Web Service Composition Based on Data Flow Analysis

The test method is based on the data flow information extracted by the test model WSCTM. With the test
method, Web Service composition testing can be accomplished in three levels.

3.1 Web service composition testing from service perspective

In the WSCTM, the entities of a Web Service composition are modeled as service, including request
implementation, service finder, and activity. By using service to model the entities, we can derive data flow test
cases from three different perspectives: intra-activity, intra-service, and inter-service.

From the intra-activity perspective, we consider the data flow information of individual operation within a
basic activity as well as the data interaction among the operations through operation calls within the service. These
can be obtained from the flow graph, ICFGs, of corresponding operations within a service. Thus, from the

2108 Journal of Software 软件学报 Vol.20, No.8, August 2009

intra-activity data flow information, test cases can be derived to exercise the feasible paths in each basic activity of
a Web Service composition.

Moreover, in Web Service composition, a service can obtain variables that are shared by multiple basic
activities. These variables might have def-use chains that span over multiple basic activities. To ensure the shared
data are manipulated correctly across different basic activities, data flow testing should take into account the
“intra-service” data interactions. And from the relationship of services described in the service model, the
intra-service data interactions can be based on structure activities. Their data flow information can be obtained from
the flow graph, such as SCFCs and ICFGs, of corresponding activities.

The main focus of the inter-service is the data interactions between services. The data flow information can be
obtained from the flow graphs, such as CCFGs, SCFGs, and ICFGs, of corresponding activities and services. Based
on the inter-service data flow information, test cases can be derived for the service composition testing of Web
Service composition.

3.2 Testing Web service composition based on data flow analysis

With the considerations of intra-activity, intra-service, and inter-service, testing Web Service composition
based on data flow analysis can be accomplished in three levels. From the intra-activity perspective, the def-use
chains need to be computed at the activity level. From the intra-service perspective, the def-use chains need to be
computed at the service level. From the inter-service perspective, the def-use chains need to be computed at the
service cluster level. Each of the three levels is described as follows:

Activity Level
Activity level testing is used to test a cluster of operations within a service for the message whose def-use

chains involve more than one operation. An operation cluster is a set of operations that interact through operation
calls within a service. With the calling relationships, the operation of a service can be grouped into a set of
operation clusters. For an operation cluster, the activity level testing is required if the def-use chain for a definition
in one operation consists of uses of the definition in other operations in the cluster. As described in Section 3, the
def-use chains for an operation cluster can be computed from the ICFG of the cluster. From the def-use chains, test
paths at the activity level then can be obtained.

Service Level
Service level testing is used to test the interactions of all the operations in a service. With different structure

activity invocation sequence, the def-use chains of global variables within a service can be changed for the various
composite constructs such as parallel (flow), choice (pick, switch), and sequence (sequence). As described in
Section 3, the def-use chains for different structure activity invocation sequences can be computed from the SCFG
of a service. Note that the number of structure activity invocation sequence can be infinite. As a result, a criterion is
required in order to select a subset of the sequences to obtain the def-use chains.

Service Cluster Level
Service cluster level testing is used to test a cluster of services for the variables that have a def-use chain 〈d,u〉,

where d is in one service and u is in another. Note that a service cluster is a set of services that are associated via
message passing. For example, if service S1 sends a message to service S2, S1 and S2 are in the same service cluster.
For message passing in service cluster level, such as data transmissions between two Web Services via SOAP
protocol, test path can be obtained from the CCFG of related services as discussed in Section 3.

3.3 Discussion of the test approach

It should be pointed out that the major focus of our approach is to adapt traditional data flow analysis

董文莉 等:基于 BPEL 的 Web Service 组合的数据流分析测试方法 2109

techniques to the context of Web Service composition for computing their def-use chains thoroughly. Especially, the
approach takes into account the data flow information introduced by Web Service technologies, such as Web Service
workflow (BPEL). As a result, the approach is able to compute important def-use chains that cannot be identified by
applying conventional test methods to the scripts or programs in Web Service implementation. This approach also
solves the insufficient problem resulting from lacking of the internal structure in the common theme of existing Web
Service composition test approaches. It can describe and check more delicate properties involving the effect and
output of Web Service composition.

By applying the approach to several examples, our experiences show that the def-use chains introduced by
workflow, dynamic composition and re-composition of Web Service can be effectively identified. These def-use
chains are critical in checking the data flow anomalies of Web Service composition. For example, in ATM process,
by variable sessionID, both service ATM and ATMSupport are checked based on the data flow analysis. In
particular, they are required to detect the structural errors caused by the misuses of variables in a Web Service
composition implementation. In addition, a major part of the proposed approach can be automated. The SRD for a
Web Service composition can be constructed automatically from the BEPL document and WSDL documents to
achieve desired Web Service composition test coverage. Furthermore, in order to exercise the derived test paths, test
data need to be generated. By combining with the automated test data generation methods, the approach can reduce
the testing cost while improving the quality of a Web Service composition.

4 An ATM Transaction

To illustrate the test method for BEPL-based Web Service composition based on data flow analysis, let us
consider the ATM service and ATMSupport service of the Web Service composition described by ATM BPEL
presented in Fig.4.

Table 1 lists all the variables, their appropriate data flow test levels, and the def-use chains for the Web Service
ATM and ATMSupport of an ATM transaction. Due to space limitation, the first line of BPEL document includes the
variable definition is omitted in Fig.4, and the variables which are defined only in first line will be specified to be
that in line 0. Based on our approach, all def-use chain can be thoroughly identified to serve as a reference for test
case generation. These systematically identified def-use chains, when combined with appropriate test criteria and
sound test strategies, can prove a cost-effective approach in uncovering Web Service composition defects. Taking
variable sessionID as example to illustrate def-use chains, sessionID is defined in line 0, 2 (in service ATMSupport),
5 (in service ATM), 9 (initiated), and is used in line 4 (variable assigned in service ATM), 7 (operational variable),
20 (operational variable), 22 (variable used in service ATM), 34 (operational variable). So, 〈0,2〉 (from service ATM
to ATMSupport) and 〈2,5〉 (from service ATMSupport to ATM) are Service cluster def-use chains; 〈5,9〉 (in service
ATM), 〈9,22〉 (in service ATM), and 〈2,4〉 (in service ATMSupport) are service def-use chains; 〈5,7〉 (sessionID is
operational variable in line 7), 〈9,20〉 (sessionID is operational variable in line 20), 〈9,34〉 (sessionID is operational
variable in line 34) are activity (operation cluster) def-use chains.

2110 Journal of Software 软件学报 Vol.20, No.8, August 2009

0 …
1 〈receive partnerLink=“atmFrontEnd” portType=“tns:atmServicePT” operation=“connect”

variable=“connectReq” reateInstance=“yes” name=“ATMConnectReceive”/〉
2 〈invoke partnerLink=“atmSupport” portType=“support:atmSupportServicePT”

operation=“nextSessionID” inputVariable=“newSessionReq” outputVariable=“newSessionRsp”/〉
3 〈assign〉 〈copy〉
4 〈from variable=“newSessionRsp” part=“sessionID”/〉
5 〈to variable=“sessionMsg” part=“sessionID”/〉
6 〈/copy〉 〈/assign〉
7 〈reply partnerLink=“atmFrontEnd” portType=“tns:atmServicePT” opera-tion=“connect”

variable=“sessionMsg” name=“ATMConnectReply”〉
8 〈correlations〉
9 〈correlation set=“atmInteraction” initiate=“yes”/〉
10 〈/correlations〉 〈/reply〉 〈assign〉 〈copy〉
11 〈from expression=“true()”/〉
12 〈to variable=“connected”/〉
13 〈/copy〉 〈/assign〉
14 〈while condition=“bpws:getVariableData(‘connected’)”〉
15 〈scope variableAccessSerializable=“no”〉
16 〈correlationSets〉
17 〈correlationSet name=“customerInteraction” properties=“tns:customerid”/〉
18 〈/correlationSets〉
19 〈pick createInstance=“no”〉
20 〈onMessage partnerLink=“atmFrontEnd” portType=“tns:atmServicePT” operation=“logon” variable=“logonReq”〉
21 〈correlations〉
22 〈correlation set=“atmInteraction” initiate=“no”/〉
23 〈correlation set=“customerInteraction” initiate=“yes”/〉
24 〈/correlations〉
25 〈scope variableAccessSerializable=“no”〉
26 〈variables〉
27 〈variable name=“loggedon” type=“xsd:boolean”/〉
28 〈/variables〉 〈sequence〉 〈assign〉 〈copy〉
29 〈from expression=“true()”/〉
30 〈to variable=“loggedon”/〉
31 〈/copy〉 〈/assign〉
32 〈while condition=“bpws:getVariableData(‘loggedon’)”〉
33 〈pick createInstance=“no”〉
34 〈onMessage partnerLink=“atmFrontEnd” portType=“tns:atmServicePT” operation=“logoff” variable=“logoffReq”〉
35 〈correlations〉
36 〈correlation set=“customerInteraction” initiate=“no”/〉
37 〈/correlations〉
38 〈assign〉 〈copy〉
39 〈from expression=“false()”/〉
40 〈to variable=“loggedon”/〉
41 〈/copy〉 〈/assign〉 〈/onMessage〉
42 〈onMessage partnerLink=“atmFrontEnd” portType=“tns:atmServicePT” operation=“deposit” variable=“operationReq”〉
43 〈correlations〉
44 〈correlation set=“customerInteraction” initiate=“no”/〉
45 〈/correlations〉 〈sequence〉 〈assign〉 〈copy〉
46 〈from expression=“20”/〉
47 〈to variable=“operationRsp” part=“balance”/〉
48 〈/copy〉 〈/assign〉
49 〈reply partnerLink=“atmFrontEnd” portType=“tns:atmServicePT” op-era-tion=“deposit” variable=“operationRsp”/〉
50 〈/sequence〉 〈/onMessage〉
51 〈onMessage partnerLink=“atmFrontEnd” portType=“tns:atmServicePT” op-eration=“withdraw” variable=“operationReq”〉
52 〈correlations〉
53 〈correlation set=“customerInteraction” initiate=“no”/〉
54 〈/correlations〉 〈sequence〉 〈assign〉 〈copy〉
55 〈from expression=“10”/〉
56 〈to variable=“operationRsp” part=“balance”/〉
57 〈/copy〉 〈/assign〉
58 〈reply partnerLink=“atmFrontEnd” portType=“tns:atmServicePT” op-era-tion=“withdraw” variable=“operationRsp”/〉
59 …

Fig.4 BPEL of ATM process

董文莉 等:基于 BPEL 的 Web Service 组合的数据流分析测试方法 2111

Table 1 Def-Use chains for ATM transaction
Service Variable Test level Def-Use chains
ATM Service cluster 〈2,5〉

 Service 〈5,9〉, 〈9,22〉

sessionID
Activity 〈5,7〉, 〈9,20〉, 〈9,34〉

 Connected Service 〈0,12〉, 〈12,(14,15)〉
 Customerid Service 〈0,17〉, 〈17,23〉
 Service 〈0,20〉, 〈0,36〉, 〈0,44〉, 〈0,53〉

customerName
Activity r 〈0,34〉, 〈0,42〉, 〈0,51〉

Loggedon Service 〈27,30〉, 〈30,(32,33)〉, 〈30,40〉
Amount Activity 〈0,42〉, 〈0,51〉
Balance Activity 〈0,47〉, 〈47,49〉, 〈47,56〉, 〈56,58〉

ATMSupport Service cluster 〈0,2〉

newSessionRsp. sessionID
Service 〈2,4〉

5 Conclusion and Future Work

This paper proposes a test method for BEPL-based Web Service composition based on data flow analysis to
uncover the Web Service composition defects. The test model is presented to capture the data flow test artifacts of
Web Service composition from three perspectives, and three levels. This test model consists of two parts: service
model and structure model. The service model crosses the provider/requestor boundaries. The three components in
service model, request implementation, Web Service finder, activity, and their relationships are discussed for Web
Service composition based on the characteristic of Web Service. Then the structure model is introduced based on the
three classified components in service model, and three types of flow graphs are used to extract the data flow
information.

Based on the method proposed in this paper, the prototype system is developed, which can efficiently generate
test cases for Web Service composition testing based on BPEL. Moreover, a study involving the semantic analysis
for Web Service composition testing to flexibly test the Web Service composition is being investigated.

References:
[1] Business process execution language for Web services, Version 1.1. 2003. http://www-106.ibm.com/developerworks/library/

ws-bpel/

[2] Bratt S. Web services: Challenges and solutions. 2005. http://www.w3.org/2005/Talks/0420-sb-gartnerWS/slide2-1.html

[3] He H. What is service-oriented architecture. 2003. http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html

[4] Bloomberg J. Web services testing: Beyond SOAP. ZapThink LLC, 2002. http://www.zapthink.com

[5] Gordon AD, Pucella R. Validating a Web service security abstraction by typing. In: Proc. of the 2002 ACM Workshop on XML

Security. New York: ACM, 2002. 18−29.

[6] Sumra R, Venkatvaradan R. Web service’s test harness: A functional, load, and performance testing framework for Web services.

http://www.developer.com/services/article.php/2229161

[7] Yang YP, Tan QP, Xiao Y. Verifying Web services composition based on hierarchical colored Petri nets. In: Proc. of the 1st Int’l

Workshop on Interoperability of Heterogeneous Information Systems. New York: ACM, 2005. 47−54.

[8] Foster H, Uchitel S, Magee J, Kramer J. Model-Based verification of Web service compositions. In: Proc. of the 18th IEEE Int’l

Conf. on Automated Software Engineering. Washington: IEEE Computer Society, 2003. 152−161.

[9] Fu X, Bultan T, Su JW. Analysis of interaction Web services. In: Proc. of the 13th Int’l World Wide Web Conf. New York: ACM,

2004. 621−630.

[10] Narayanan S, Mcllraith SA. Simulation: Verification and automated composition of Web services. In: Proc. of the 13th Int’l World

Wide Web Conf. New York: ACM, 2002. 77−88.

2112 Journal of Software 软件学报 Vol.20, No.8, August 2009

[11] Ball T, Rajamani SK. Automatically validating temporal safety properties of interfaces. In: Proc. of the 8th Int’l SPIN Workshop on

Model Checking of Software. New York: Springer-Verlag, 2001. 103−122.

[12] Lomuscio1 A, Qu HY, Sergot M, Solanki M. Verifying temporal and epistemic properties of Web service compositions. Berlin:

Springer-Verlag, LNCS, 2007. 456−461.

[13] Fu X, Bultan T, Su J. Model checking interactions of composite Web services. 2004. http://www.cs.ucsb.edu/~su/tmp/

Map2SPIN.pdf

[14] Rapps S, Weyuker EJ. Selecting software test data using data flow information. IEEE Trans. on Software Engineering, 1985,11(4):

367−375.

[15] Hong HS, Cha SD, Lee I, Sokolsky O, Ural H. Data flow testing as model checking. In: Proc. of the Int’l Conf. on Software

Engineering. 2003. 232−242.

[16] Liu CH. Data flow analysis and testing of Java server pages. In: Proc. of the 28th Annual Int’l Computer Software and Applications

Conf.—Workshops and Fast Abstracts. Washington: IEEE Computer Society, 2004. 114−119.

[17] Li Y, Peng CW, Liu YJ. Research and realization of networked method for structural test. Test Technology and Testing Machine,

2007,47(1):9−13.

[18] Karam MR, Smedley TJ. A data-flow testing methodology for a dataflow based visual programming language. In: Proc. of the

Human Centric Computing Languages and Environments. Washington: IEEE Computer Society, 2002. 86−88.

[19] Zhao JJ. Data-Flow-Based unit testing of aspect-oriented programs. In: Proc. of the Computer Software and Applications Conf.

Washington: IEEE Computer Society, 2003. 188−197.

[20] Chen JF, Shen JY, Wang XJ, Liu Y, Wang ZH. Automatic test data generation algorithm based on data flow rules. Microelectronics

& Computer, 2007,24(1):5−9.

[21] Chen WH, Lu CC. Executable test sequence for the protocol control and data flow property with overlapping. In: Proc. of the IEEE

Symp. on Computers and Communications. Washington: IEEE Computer Society, 2002. 251−257.

[22] Dong WL, Meng LM. tML schema based ICS proforma and generation method. Chinese Journal of Electronics, 2005,14(4):

681−685.

[23] Qadeer S, Rajamani SK, Rehof J. Summarizing procedures in concurrent programs. ACM SIGPLAN Notices, 2004,39(1):245−255.

[24] Dong WL, Yu H, Zhang YB. Testing BPEL-based Web service composition using high-level Petri nets. In: Proc. of the 10th IEEE

Int’l Enterprise Distributed Object Computing Conf. Washington: IEEE Computer Society, 2006. 441−444.

DONG Wen-Li was born in 1976. She is
an assistant professor at the Institute of
Software, the Chinese Academy of
Sciences. Her current research areas are
Web technology and software engineering.

 HU Jian-Hua was born in 1966. He is an
associate professor at Huaihai Institute of
Technology. His researches areas are
computer application and network security.

	1 Introduction
	2 The Web Service Composition Test Model
	2.1 The service model
	2.2 The structure model

	3 Testing for Web Service Composition Based on Data Flow Analysis
	3.1 Web service composition testing from service perspective
	3.2 Testing Web service composition based on data flow analysis
	3.3 Discussion of the test approach

	4 An ATM Transaction
	5 Conclusion and Future Work

