

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.20, No.7, July 2009, pp.1756−1767 http://www.jos.org.cn
doi: 10.3724/SP.J.1001.2009.00566 Tel/Fax: +86-10-62562563
© by Institute of Software, the Chinese Academy of Sciences. All rights reserved.

基于相关分析的多数据流聚类
∗

屠 莉 1+, 陈 崚 2,3, 邹凌君 2

1(南京航空航天大学 信息科学与技术学院,江苏 南京 210093)
2(扬州大学 计算机科学与工程系,江苏 扬州 225009)
3(南京大学 计算机软件新技术国家重点实验室,江苏 南京 210093)

Clustering Multiple Data Streams Based on Correlation Analysis

TU Li1+, CHEN Ling2,3, ZOU Ling-Jun2

1(Institute of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210093, China)
2(Department of Computer Science and Engineering, Yangzhou University, Yangzhou 225009, China)
3(State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China)

+ Corresponding author: E-mail: yzutuli@yahoo.com.cn, lchen@yzcn.net

Tu L, Chen L, Zou LJ. Clustering multiple data streams based on correlation analysis. Journal of Software,
2009,20(7):1756−1767. http://www.jos.org.cn/1000-9825/566.htm

Abstract: This paper proposes a compression scheme which quickly compresses the raw data from multiple
streams into a compressed synopsis. The synopsis allows to incrementally reconstruct the correlation coefficients
without accessing the raw data. A modified k-means algorithm is developed to generate clustering results and
dynamically adjust the number of clusters in real time so as to detect the evolving changes in the data streams.
Finally, the framework is extended to support clustering on demand (COD), where a user can query for clustering
results over an arbitrary time horizon. A theoretically sound time-segment partitioning scheme is developed so that
any demand time horizon can be fulfilled by a combination of those time-segments. Experimental results on
synthetic and real data sets show that the algorithm has higher clustering quality, speed and stability than other
methods and can detect the evolving changes of the data streams in real time.
Key words: clustering; data stream; correlation analysis

摘 要: 提出基于相关分析的多数据流聚类算法.该算法将多数据流的原始数据快速压缩成一个统计概要.根据

这些统计概要,可以增量式地计算相关系数来衡量数据间的相似度.提出了一种改进的 k-平均算法来生成聚类结果.
改进的 k-平均算法可以动态、实时地调整聚类数目,并及时检测数据流的发展变化.还将算法应用到按照用户要求

的聚类问题(COD),使得用户可以在任意的时间区间上查询聚类结果.提出了一种合理的时间片断划分机制,使得用

户指定的任意时间区间都可以由这些时间片断组合而成.在模拟和真实数据上的实验结果都表明,该算法比其他方

法具有更好的聚类质量、速度和稳定性,能够实时地反映数据流的变化.
关键词: 聚类;数据流;相关分析

∗ Supported by the National Natural Science Foundation of China under Grant Nos.60673060, 60773103 (国家自然科学基金); the

Natural Science Foundation of Jiangsu Province of China under Grant No.BK2008206 (江苏省自然科学基金)
Received 2007-08-11; Revised 2008-01-10, 2008-03-11; Accepted 2008-07-02

屠莉 等:基于相关分析的多数据流聚类 1757

中图法分类号: TP18 文献标识码: A

1 Introduction

Extensive research has been done for mining data streams[1], including those on the stream data
classification[2,3], mining frequent patterns[4−6], and clustering stream data[4,7−16]. There are various applications
where it is desirable to cluster the streams themselves rather than the individual data records within them. In this
paper, we study the clustering of multiple and parallel data streams. Our goal is to group multiple streams with
similar behaviors and trends together, instead of clustering the data records within one data stream. Therefore, the
methods designed for clustering static data sets[17−19] cannot be directly applied to multiple data streams. There has
been some previous works on clustering multiple data streams[20−23]. Yang[20] used the weighted aggregation of
snapshot deviations as the distance measure between two streams, which can observe the similarity of data values
but ignore the trends of streams. Beringer et al.[21] proposed a method which used a discrete Fourier transforms
(DFT) approximation of the original data, and with that method the distance between two streams was computed by
using their low-frequency coefficients. Since DFT transformation preserves the Euclidean distances, the DFT
distance is equivalent to the Euclidean distance of the data streams.

A serious limitation of the above previous works is that they are all based on the Euclidean distance of data
records, but the important trend information contained in data streams is typically discarded by clustering methods
based on Euclidean distance. This is true because data streams with
similar trends may not be close in their Euclidean distance. As an
illustration, Figure 1 shows the trends of three stocks on Nylon,
chemical fiber, and CPU chip respectively. Although the two stocks
on CPU chip and chemical fiber are closer in their data values and
hence their Euclidean distance, the trends of the two stocks on Nylon
and Chemical fiber are obviously closer. However, such trends of
stocks can be suggested by their higher correlation coefficient. If
with Euclidean distance, we may conclude that the two stocks on
CPU chips and chemical fiber are more similar.

In this paper, we propose a multiple streams clustering algorithm based on the correlation analysis. We
propose a novel compression scheme that quickly compresses the raw data from multiple streams into a compressed
synopsis. The synopsis allows us to incrementally reconstruct the correlation coefficients without accessing the raw
data. A modified k-means algorithm is developed to generate the clustering results. The k-means algorithm is
modified so that it can dynamically adjust the number of clusters in real time, and therefore can detect the evolving
changes in the data streams. Finally, we extend the framework to support clustering on demand (COD), where a user
can query for clustering results over an arbitrary time horizon. A theoretically sound time-segment partitioning
scheme is developed so that any demand time horizon can be fulfilled by a combination of those time-segments.
Experimental results on synthetic and real data sets show that our algorithm is higher in clustering speed, quality
and stability than other methods, and can detect the evolving changes in the data streams in real time.

2 Background

2.1 Clustering data streams

A data stream X is a sequence of data items x1,…,xk arriving at discrete time steps t1,t2,…,tk. We assume that

Fig.1 Price of stocks on nylon,
chemical fiber, and CPU chips

Nylon

CPU chip

Chemical fiber

1758 Journal of Software 软件学报 Vol.20, No.7, July 2009

there are n data streams {X1,...,Xn} at each time step m, where Xi={xi1,...,xim}, 1≤i≤n, and xij(j=1,...,m) is the value of
stream Xi at the time j.

The problem of clustering multiple data streams is defined as follows. Given the time horizon for clustering L
and the number of clusters k, the clustering algorithm partitions n data streams into k clusters C(L)={C1(L),...,Ck(L)}
that minimizes some objective function measuring the quality of clustering in the period [t−L+1,t], where t is the
time when the analysis is performed. The given clusters Cj(L), j=1,...,k, should satisfy

 1 (1)
1 1

() , () { (),..., ()}, where () { ,..., }, 1,...,
k k

j j n i i t L it
j j

C L C L X L X L X L x x i n− +
= =

= ∅ = = =∩ ∪ (1)

2.2 Attenuation coefficient

In the stream data analysis, in order to recognize the evolving changes of data streams, newer data records are
often given more weights than the older ones. Therefore, we use an attenuation coefficient λ∈[0,1] to gradually
lessen the significance of each data record over time. Suppose t is the current time and a data point xi is received at
time i, then we replace the original value of xi by xi(t)=λt−ixi in our analysis.

2.3 Segment

We first consider the fixed-length clustering and then extend the algorithm to the arbitrary-length clustering of
COD in Section 4. Given a fixed length L, at any time t, we report in real time the clustering results for the data
streams in the time horizon [t−L+1,t]. To support efficient processing, we partition the data streams of length L into
m time segments of equal length l=L/m. Whenever a new segment of length l accumulates (Fig.2), we re-compute
the clustering results.

Fig.2 A fixed length L is divided into m segments of size l

3 The Correl-Cluster Algorithm

The framework of the proposed CORREL-cluster algorithm is shown in Fig.3.
The algorithm keeps detecting and reporting the clusters for the most recent data streams of the fixed length L.

For every l time steps, it first computes the compressed correlation representation (CCR) and the correlation
coefficients of the data streams, and then clusters the streams based on their correlation coefficients. Since the
number of clusters k may be changing, CORREL-cluster also employs a new algorithm to dynamically adjust k in
order to recognize the evolving behaviors of the data streams (Line 12). The algorithm is schematically shown in
Fig.4.

X={x1,x2,…,xn}

L=m×l

O
ld

 ti
m

e
se

ct
io

n

N
ew

 ti
m

e
se

ct
io

n

屠莉 等:基于相关分析的多数据流聚类 1759

Fig.3 Overall process of CORREL-cluster Fig.4 Illustration of CORREL-cluster

3.1 Correlation analysis of data streams

Before describing the details of our algorithm, we first overview the concepts of correlation analysis.
We first define the correlation coefficients for two data streams. For data segments of two streams X=(x1,...,xn)

and Y=(y1,...,yn), their correlation coefficient is defined as

1

2 2
1 1

()()

() ()

n
i ii

XY n n
i ii j

x x y y

x x y y
ρ =

= =

− −
=

− −

∑
∑ ∑

,

where 1() /n
iix x n

=
= ∑ and 1() /n

iiy y n
=

= ∑ .

From the definition, we can see that |ρXY|≤1. A large value of |ρXY| indicates a strong correlation between
streams X and Y, and ρXY=0 means X and Y are uncorrelated. Since it is often impossible to store all the past raw
data in the stream, we need to compress the raw data and only retain a synopsis for each time segment of a data
stream.

Theorem 3.1. The correlation coefficient ρXY between two sequences X and Y can be calculated with the
information ix∑ , 2

ix∑ , iy∑ , 2
iy∑ , and i ix y∑ .

The proof of Theorem 3.1 is omitted due to the limited space. Based on Theorem 3.1, in CORREL-cluster, for
any time segment, we store a compressed synopsis for the multiple data streams instead of the whole raw data.

Definition 3.1 (compressed correlation representation). Given n data streams X1,...,Xn, suppose the current
time is t, the time segment length is l, then the compressed correlation representation of this time segment is defined

as ((,), (,), (,)S t l Q t l C t l , where vectors 1 2(,) (, ,...,)nS t l S S S= , 1 2(,) (, ,...,)nQ t l Q Q Q= and matrix C(t,l)=[Cij].

Components of the vectors (,)S t l , (,)Q t l and matrix C(t,l) are defined as:

1

()
t

i ik
k t l

S x t
= − +

= ∑ , 2

1
()

t

i ik
k t l

Q x t
= − +

= ∑ ,
1

() (), , 1,..., ,
t

ij ik jk
k t l

C x t x t i j n i j
= − +

= = <∑ (2)

here, xik(t) is the kth datum of the ith stream at time t.
The compressed correlation representation provides enough information to compute the correlation coefficients

between any two streams in n data streams X1,...,Xn. Based on Theorem 3.1 and the definition of correlation
coefficient, we can easily get the following theorem.

Theorem 3.2. Let Xi and Xj, i,j=1,...,n, be data segments of two streams, their correlation coefficients
i jX Xρ .

1. procedure CORREL-cluster
2. t=0;
3. while data stream is not terminated
4. set t=t+1;
5. read new data record xk(t), k=1,…,n, one from

 each of the n data streams;
6. if (t mod l=0) then
7. calculate the CCR of the new time segment;
8. update CCRs of the existing segments;
9. if t=L then compute initial CCR

for time window [1,L];
10. else incrementally update CCR

for the new time window
11. call correlation-k-means();
12. call adjust_k();
13. output the clustering result;
14. endif
15. end while
16. end procedure

L=m*l

Correlation
coefficient Data streams

Statistical
synopsis

Clustering
results

Dynamic
K-means

l ρ

l

l

…

ρ

ρ

…

…

…
 CCR

1760 Journal of Software 软件学报 Vol.20, No.7, July 2009

can be computed by

2 2

1

1 1i j

ij i j

X X

i i j j

C S S
n

Q S Q S
n n

ρ
−

=
⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (3)

Example 1. Let l=10 and t=1, data streams X1=(18,23,21,17,24,22,25,19,21,20) and X2=(19,22,24,20,22,23,24,
20,16,18) in the time period 1 to 10. Since S1=210, S2=208, Q1=4470, Q2=4390, C12=4402, the compressed
correlation representation are [(210,208),(4470,4390),4420]. By Theorem 3.2, the correlation coefficient of X1 and
X2 is

1 2X Xρ =0.9713.

3.2 Update of the compressed correlation representation

Let t−tc=Δt and λ be the attenuation coefficient, at any time t>tc, the data values of xik(tc) are replaced by xik(t):
() ()c c c ct t t i t t t it i t

ik ik ik ik ik cx t x x x x tΔλ λ λ λ λ− + − − −−= = = = .

Since the values of xik(tc) are updated, the compressed correlation representation needs to be modified

accordingly. Let (,)i c cS t l′ , (,)i c cQ t l′ and (,)ij c cC t l′ be the updated values of (,)i c cS t l , (,)i c cQ t l and Cij(tc,lc),

then (,) (,)t
i c c i c cS t l S t lΔλ′ = , 2(,) (,)t

i c c i c cQ t l Q t lΔλ′ = and 2(,) (,)t
ij c c ij c cC t l C t lΔλ′ = . We notice that such an update

happens not at every time step, but every l step (Line 8 in Fig.3). Whenever a new time segment comes in, we
compute the new compressed correlation representation.

Example 2. In Example 1, let λ=0.9, then at time t=3, since Δt=2, therefore S1=210×0.92=170.10, S2=208×
0.92=168.48, Q1=4470×0.94=2932.767, Q2=4390×0.94=2880.279, C12=4402×0.94=2888.1522.

3.3 Aggregation of compressed correlation representation

In CORREL-cluster, for a user specified clustering length L=ml, we need to compute the correlation
coefficients for data segments in time window [t−L+1,t] so as to cluster the data streams. Since we compute a
compressed correlation representation for each time segment with length l, we need to combine them with the
compressed correlation representation for the time window [t−L+1,t].

In each time window, there are m time segments and m compressed correlation representations

[(1,), (1,), (1,)]S t vl l Q t vl l C t vl l− + − + − + for v=1,...,m. Similarly, we denote the compressed correlation

representation for time window [t−L+1,t] as [(1,), (1,), (1,)]S t L L Q t L L C t L L− + − + − + . Let the ith component of

(1,)S t L L− + and (1,)Q t L L− + be (1,)iS t L L− + and (1,)iQ t L L− + respectively, then we have (iS t L−

1,)L+ =
1

(1,)
m

i
v

S t vl l
=

− +∑ ,
1

(1,) (1,)
m

i i
v

Q t L L Q t vl l
=

− + = − +∑ and
1

(1,) (1,)
m

v
C t L L C t vl l

=

− + = − +∑ .

We use the above equations to compute the compressed correlation representation when we receive the first m
time segments (Line 9 of Fig.3). For later updates (Line 10), we do not need to redo the summation. In fact, we can
obtain compressed correlation representation for the new time window [t−L+l+1,t+l] by
 (1,) (1,) (,) (1,)S t L l L S t L L S t l l S t ml l− + + = − + + + − − + (4)

 (1,) (1,) (,) (1,)Q t L l L Q t L L Q t l l Q t ml l− + + = − + + + − − + (5)
 (1,) (1,) (,) (1,)C t L l L C t L L C t l l C t ml l− + + = − + + + − − + (6)

3.4 Dynamic k-means algorithm

We propose a dynamic k-means algorithm to cluster the data streams in the user-specified window. In the
algorithm, the distance between two data streams X and Y is measured by using the reciprocal of the correlation
coefficient d(X,Y)=1/ρXY. The correlation-k-means algorithm is shown in Fig.5.

屠莉 等:基于相关分析的多数据流聚类 1761

The fundamental idea behind this algorithm is that two consecutive clustering results are not changing very fast
over a short time gap l, and may significantly overlap with each other. The algorithm could take very few steps to
converge if it starts from the clustering result on the data segment in the previous time window.

To capture the dynamic evolution of data streams, we continuously update the number of clusters k every time
a new data segment with length l is received. Noticing that the number of the clusters could not change abruptly and
frequently in a short time gap l, we will only consider the cases where the number of clusters increases or decreases
by one. The adjust_k algorithm is shown in Fig.6. In the algorithm, the number of the clusters is adjusted by
splitting or emerging some current clusters, and the clustering quality is measured by an objective function

1 1
(1/)

i

j i

nk

X C
i j

G ρ
= =

= ∑∑ , where
j iX Cρ is the correlation coefficient between the data stream Xj and the ith cluster center

Ci, which consists of streams from X1 to
inX .

Fig.5 Algorithm for clustering Fig.6 Algorithm for adjusting k

4 Clustering on Demand

In some applications, the length of the time window depends on users’ demands[23]. Here, we extend our
clustering algorithm to support clustering on demand (COD). We call the extended algorithm CORREL-COD. The
CORREL-COD algorithm consists of online and offline processes which are performed in a pipelined fashion. The
online component calculates the summary information in correlation parameters, whereas the offline part performs
clustering.

We assume that the maximum time horizon over which the user will demand is L. Namely, we only need to
preserve information for the time period [t−L+1,t].

We assemble a combination of partitioned time segments in such a way that minimizes the difference between
the user-specified time horizon r and the best approximate time horizon r′ over which we can get compressed
correlation representation synopsis.

Let L=2d and m be the maximum number of segments the memory can store. The basic idea of our scheme is
that the segments containing newer data will have shorter lengths, leading to higher clustering accuracy for newer
data so as to make the difference |r−r′| as small as possible. We assume m>logL. In our scheme, we first arrange

Algorithm correlation-k-means(k,Centerk,Rk)
Input: number of the clusters k, sets of the center
 points, Centerk; current clustering result Rk;
Output: updated clustering results Rk and its

objective function value Gk.
begin

1. repeat
 2. for i=1 to n

 calculate the correlation distances between
 stream Xk and centers of k clusters and assign

Xk to the cluster with the shortest distance;
 end for

3. compute the new center of each cluster,
 update the set of centers Centerk;

4. until no change of clustering result
5. calculate the objective function Gk.

end

Algorithm adjust_k(k,Centerk,Rk)
Input: number of the clusters k, sets of the center
 points Centerk, current clustering result Rk;
Output: updated number of clusters k′, updated

clustering result Rk’ and its objective
function value Gk.

begin
1 Calculation of Rk+1

Among all the clusters, choose the data stream X which is
the farthest from its cluster center, set a new cluster with X
as its center;

 Centerk+1=Centerk∪{X}
 correlation-k-means(k+1,Centerk+1,Rk+1)
2 Calculation of Rk−1

 Choose two closest clusters, suppose their centers are
 C1 and C2 respectively,
 combine these two clusters into a new cluster,
 compute the center C3 of the new cluster
 Centerk−1=Centerk∪{C3}−{C1,C2}
 correlation-k-means(k−1,Centerk−1,Rk−1)

3 choose the one with best G form Rk−1,Rk,Rk+1,
 set k′ and Rk′ accordingly;

end

1762 Journal of Software 软件学报 Vol.20, No.7, July 2009

segments with lengths of 1,2,22,23,...,2d−1, respectively. Let m′=m−logL=m−d, and Si denotes the segment with
length 2i. For the m' unassigned segments, we assign them according to the following rule.

We first remove Sd−1, replace the region of Sd−1 by two more Sd−2, and then reduce m′ by one. If m′>0, we will
keep splitting a larger segment into two smaller segments. When there are still Sd−2 segments, we split the most
recent Sd−2 into two Sd−3, and then reduce m′ by one, until all Sd−2 segments are removed or m′=0. If all Sd−2
segments are removed and m′>0, we will split the most recent Sd−3 into two Sd−4 and reduce m′ by one. We repeat
this process until m′=0.

Given L, m, and m′=m−logL, it is easy to show that with our scheme, the maximum length of any segment is 2k,
where
 k=argmaxi(m′≤Ci)−1,Ci=2d−i+2−(d−i+2) (7)

Let Ti be the number of segments of type Si, we can prove that (the proof is omitted):
 Tk=Ck+1−m′+1, Tk−1=2(2d−k−Tk)−1, Ti=1,i=0,1,…,k−2, Ti=0 for i>k (8)

Example 3. Let L=1024, m=20, d=10. Then m′=m−logL=10. By Eq.(7), we get C9=3, C8=10, C7=25. This gives
k=7 since argmaxi(m′≤Ci)=8. Then by Eq.(8), we get T7=10−10+1=1, T6=2(2(10−7)−1)−1=13, and T5=T4=T3=T2=T1=
T0=1.

Theorem 4.1. With the above partitioning scheme, we have m segments in total.
Proof: The number of segments is

1 1

1
0

1 1

2(2) 1 (1) 2 2 2 (1) 2

 2 2 (3) 3 .

k
d k d k d k

i k k k k
i

d k d k

T T T k T k C m k

d k m k m d m

− − + − +
+

=

− + − +

′= + − − + − = − + − = − − + + −

′ ′= − + − + + + − = + =

∑ □

Theorem 4.2. Using the above partitioning scheme, the total length of the m segments is L−1.
Proof: The total length of all segments is

 1 0 1 1
1 0

0
2 2 2 ... 2 2 2 [2(2) 1] 2 1 2 1 1

k
i k k k k d k k d

i k k k k
i

T T T T T T L− − − −
−

=

= + + + = + − − + − = − = −∑ . □

Example 4. In Example 3,

0
1 13 1 1 1 1 1 1 20

k

i
i

T m
=

= + + + + + + + = =∑ , 7 6 5 4 3 2 0

0
2 2 1 2 13 2 1 2 1 2 1 2 1 2 1 1023 1

k
i

i
i

T L
=

= × + × + × + × + × + × + × = = −∑ .

Theorem 4.3. Suppose that the user demands a query for a horizon of length r≤L. With the above partitioning
scheme, suppose r′ is the total length of a set of selected segments closest to r, then we can get r′−r≤2k, where
k=argmaxi(m′≤Ci)−1.

Proof: To form a set of the most recent segments with a total length closest to r, we can incrementally add S1,
S2,… to the set until the total length of the selected segments r′ is larger than r. Suppose the longest segment in the
resulting set is Sg, since r<L we have g≤k, and r′−r≤2g≤2k, here k=argmaxi(m′≤Ci)−1 by Eq.(7). □

The above results show that our partitioning scheme achieves two goals. First, we assign shorter segments to
newer data and thus give newer data higher precision. Second, the largest possible difference between the length of
the approximate combination of segments and the user requested length is lowered to 2g, where g<k. It can easily be
seen from Eq.(7) that k<logL−1, therefore the difference r′−r is much smaller than L/2.

5 Experimental Results

To evaluate the performance of our algorithms, we test them by using both synthetic data and real data on a PC
with 1.7GHz CPU and 512 MB memory running Window XP. The algorithms are coded by Visual C++ 6.0.

屠莉 等:基于相关分析的多数据流聚类 1763

5.1 Testing data

We generate the synthetic data in the same way as in Ref.[21]. For each cluster, we first define a prototype p(⋅)
which is a stochastic process defined by a second-order difference equation:

() () ()
() () (), 0, ,2 ,...

p t t p t p t t
p t t p t u t t t t

Δ Δ
Δ Δ Δ

′+ = + +
′ ′+ = + =

 (9)

where u(t) are independent random variables uniformly distributed in an interval [−a,a]. The data streams in the
cluster are then generated by “distorting” the prototype, both horizontally (by stretching the time axis) and
vertically (by adding noise). The formulation for a data stream x(⋅)is defined as:
 x(t)=p(t+h(t))+g(t) (10)
where h(⋅) and g(⋅) are stochastic processes generated in the same way as the prototype p(⋅). The constant a that
determines the smoothness of a process can be different for p(⋅), h(⋅), and g(⋅), such as 0.04, 0.04, 0.5, respectively.

We can then generate different clusters by generating different prototype functions p(⋅). For each prototype
function, we randomly distort the prototype to generate multiple data streams in that cluster.

The real data set (Fig.7) that we use contains the average daily temperatures of 169 cities around the world,
recorded from Jan.1, 1995 to the present. Each city is regarded as a data stream and each stream has 3 416 points.

Fig.7 Daily temperatures for 169 cities around the world

5.2 Performance analysis on CORREL-cluster

5.2.1 Clustering results
We ran CORREL-cluster on the real data set downloaded from the website http://www.engr.udayton.edu/

weather/default.htm to cluster cities based on the recorded daily temperatures. We set L=360 and l=30. The input of
the algorithm is the daily temperatures of cities around the world. CORREL-cluster gave five clusters each of which
contains cities mostly in the same continent and belonging to the same temperature zone. The correct rate is around
85% to 89%. The results are shown in Figs.8~12, where each figure illustrates one cluster.

Fig.8 Cluster 1: Cities in Asia Fig.9 Cluster 2: Cities in Europe

0 50 100 150 200 250 300 350

Time

90
80
70
60
50
40
30
20
10

0
−10

Te
m

pe
ra

tu
re

 (F
)

0 50 100 150 200 250 300 350

Time

90
80
70
60
50
40
30
20
10

0
−10

Te
m

pe
ra

tu
re

 (F
)

0 50 100 150 200 250 300 350

Time

90
80
70
60
50
40
30
20
10

0
−10

Te
m

pe
ra

tu
re

 (F
)

1764 Journal of Software 软件学报 Vol.20, No.7, July 2009

Fig.10 Cluster 3: Cities in Oceania Fig.11 Cluster 4: Cities in Africa

Fig.12 Cluster 5: Cities in South America

5.2.2 Quality
We evaluate the quality of the clustering from CORREL-cluster by comparing with that from DFT-cluster[21]

(30 DFT coefficients). Figure 13 shows a comparison of the clustering quality on the real city-temperature data set
by CORREL-cluster and DFT-cluster for various numbers of
segments. The quality is measured by the correct rate, the ratio
of the number of cities that are correctly labeled to the total
number of cities.

Since we use a fixed time horizon L=360, the larger the
number of segments is, the more frequently clustering is
executed. Thus, for both algorithms, the quality improves when
the number of segments increases. However, as we can see from
Fig.13, CORREL-cluster always has a better quality than
DFT-cluster.

5.2.3 Speed
Since the clustering on the real data set is too fast, we use synthetic data sets to test the processing speed of

CORREL-cluster. We generate 6 synthetic data sets each of which contains 100 data streams. Each data stream has
65 536 data elements. Again, we compare it with DFT-cluster (250 DFT coefficients). The experimental results
show that the executing time for CORREL-cluster is shorter than that of DFT-cluster for every synthetic data set.
Figure 14 shows that the average processing time per segment for CORREL-cluster is 0.928 seconds, whereas 1.2
seconds for DFT-cluster with 250 DFT coefficients. DFT-cluster needs even longer processing time when more
coefficients are used. With 1 500 DFT coefficients, DFT-cluster takes in an average over 7 seconds. Reducing the

0 50 100 150 200 250 300 350

Time

90
80
70
60
50
40
30
20
10

0
−10

Te
m

pe
ra

tu
re

 (F
)

0 50 100 150 200 250 300 350

Time

90
80
70
60
50
40
30
20
10

0
−10

Te
m

pe
ra

tu
re

 (F
)

0 50 100 150 200 250 300 350

Time

90
80
70
60
50
40
30
20
10

0
−10

Te
m

pe
ra

tu
re

 (F
)

Fig.13 Clustering quality of CORREL-cluster
and DFT-cluster on real data

0.88

0.86

0.84

0.82

0.80

0.90

4 6 8 16
Number of segments

C
lu

st
er

in
g

qu
al

ity
 CORREL-Cluster DFT-Cluster

屠莉 等:基于相关分析的多数据流聚类 1765

number of DFT coefficients can save time but will lead to worse quality. As we see in Fig.15, DFT-cluster with 250
DFT coefficients has much worse quality than CORREL-cluster on these synthetic data sets.

Fig.14 Computation time of CORREL-cluster and Fig.15 Quality of CORREL-cluster and
DFT-cluster on synthetic data DFT-cluster on synthetic data

5.2.4 Dynamic number of clusters
CORREL-cluster requires an initial value k for the number of clusters. We study its sensitivity to k by trying

different initial values of k. Figure 16 shows the clustering results of CORREL-cluster on a synthetic data set with
three clusters for different initial values of k, including 2, 3,4, 6, 8, 10 and 20. We can see that the number of
clusters given by CORREL-cluster soon becomes the same regardless its initial value, which indicates that the
initial value of k has little influence on the clustering performance.

Fig.16 Number of clusters found by CORREL-cluster for different initial values of k

5.3 Performance analysis on CORREL-COD

5.3.1 Scalability
To evaluate the scalability of the online processing, we test our CORREL-COD algorithm and

ADAPTIVE-cluster[23] with several randomly generated synthetic data sets of sizes varying from 1 000 to 10 000.
As we see in Fig.17, the execution time for both algorithms increases linearly with the number of data points, but
CORREL-COD is always faster than ADAPTIVE-cluster.

Fig.17 Comparison of the scalability of CORRL-COD and ADAPTIVE-cluster

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

A B C D E F
Dataset name

Ti
m

e
(s

)
CORREL-Cluster DFT-Cluster

A B C D E F
Dataset name

CORREL-Cluster DFT-Cluster
0.9

C
lu

st
er

in
g

qu
al

ity

0.6

0.7

0.8

0 10 20 30 40 50
Elapsed time

22
20
18
16
14
12
10

8
6
4
2

N
um

be
r o

f c
lu

st
er

in
g

Initial k is 2
Initial k is 3
Initial k is 4
Initial k is 6
Initial k is 8
Initial k is 10
Initial k is 20

1 2 3 4 5 6 7 8 9 10
Number of data points (k)

Ex
ec

ut
io

n
tim

e
(s

) 2.0

1.5

1.0

0.5

0.0

COR-Cluster
ADAPTIVE-Cluster

1766 Journal of Software 软件学报 Vol.20, No.7, July 2009

5.3.2 Quality
We measure the quality of clustering with Grawdata/GCOD, where Grawdata denotes the objective function obtained

by clustering the raw data directly without segmentation and GCOD denotes the objective function by clustering
based on the summary information retrieved by the online processor.

Figure 18 shows the quality of clustering on two simulated data sets for different number of segments. We see
that the larger the number of segment is, the more precise our algorithm achieves. This is because the difference
between the user-specified length and the length of the approximated statistical information becomes smaller when
the number of segments increases. From Fig.18, we can see the clustering quality is always above 95%, which
means that results by our COD algorithm are close to the optimal results that can be obtained from raw data.

Fig.18 Clustering quality for different numbers of segments

6 Conclusions

When our aim is to mine the similarity on the trends of data streams, correlation coefficient is a more
appropriate measure for similarity between data streams than Euclidean distance in previous data stream clustering
methods. In this paper, we have developed algorithms CORREL-cluster and CORREL-COD for clustering multiple
data streams based on correlation coefficients, which supports online clustering analysis over both the fixed and
flexible time horizons. Since data streams have a high speed and massive volume, we cannot retain the raw data to
perform the correlation analysis. We have proposed a compression scheme that supports an one-scan algorithm for
computing the correlation coefficients. We have developed an adaptive algorithm to dynamically determine the
number of clusters so that CORREL-cluster can detect the evolving behaviors of data streams. Moreover, we have
developed a novel partitioning algorithm to support the clustering of arbitrary length at the user’s request.
Experimental results on real and synthetic data sets show that our algorithms are high in clustering quality, speed
and scalability.

References:
[1] Babcock B, Datar M, Motwani R, O’Callaghan L. Maintaining variance and k-medians over data stream windows. In: Proc. of the

22nd ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems. San Diego, 2003. 234−243.

[2] Aggarwal CC, Han J, Wang J, Yu PS. On demand classification of data streams. In: Proc. of the 2004 Int’l Conf. on Knowledge

Discovery and Data Mining (KDD 2004). Seattle, 2004.

[3] Wang H, Fan W, Yu PS, Han J. Mining concept-drifting data streams using ensemble classifiers. In: Proc. of the Int’l Conf. on

Knowledge Discovery and Data Mining. Washington: ACM Press, 2003. 226−235.

[4] Giannella C, Han J, Pei J, Yan X, Yu PS. Mining frequent patterns in data streams at multiple time granularities. In: Kargupta H,

Joshi A, Sivakumar K, Yesha Y, eds. Proc. of the Next Generation Data Mining. AAAI/MIT, 2003.

[5] Manku G, Motwani R. Approximate frequency counts over data streams. In: Proc. of the 28th Int’l Conf. on Very Large Data Bases.

Hong Kong: Morgan Kanfmann Publishers, 2002. 346−357.

[6] Metwally A, Agrawal D, El Abbadi A. Efficient computation of frequent and top-k elements in data streams. In: Proc. of the 10th

ICDT Int’l Conf. on Database Theory. California, 2005. 398−412.

1.00
0.99
0.98
0.97
0.96
0.95

10 20 30 40 50
Number of segments

C
lu

st
er

in
g

qu
al

ity
 Dataset A Dataset B

屠莉 等:基于相关分析的多数据流聚类 1767

[7] Aggarwal CC, Han J, Wang J, Yu PS. A framework for clustering evolving data streams. In: Proc. of the 29th Very Large Databases

Conf. Berlin: Morgan Kaufmann Publishers, 2003. 81−92.

[8] Aggarwal CC, Han J, Wang J, Yu PS. A framework for projected clustering of high dimensional data streams. In: Proc. of the 2004

Int’l Conf. Very Large Data Bases (VLDB 2004). Toronto, 2004. 852−863.

[9] Domingos P, Hulten G. A general method for scaling up machine learning algorithms and its application to clustering. In: Proc. of

the 18th Int’l Conf. on Machine Learning. Williamstown: Morgan Kaufmann Publishers, 2001. 106−113.

[10] Guha S, Mishra N, Motwani R, O’Callaghan L. Clustering data streams. In: Proc. of the 41st Annual Symp. on Foundations of

Computer Science. Washington: IEEE Computer Society, 2000. 359−366.

[11] Guha S, Rastogi R, Shim K. CURE: An efficient clustering algorithm for large databases. In: Proc. of the ACM SIGMOD Int’l Conf.

on Management of Data. Seattle: ACM Press, 1998. 73−84.

[12] Henzinger MR, Raghavan P, Rajagopalan S. Computing on data streams. Technical Report, SRC Technical Note 1998-011, Palo

Alto: Digital Systems Research Center, 1998.

[13] Hulten G, Spencer L, Domingos P. Mining time-changing data streams. In: Proc. of the 7th ACM SIGKDD Int’l Conf. on

Knowledge Discovery and Data Mining. San Francisco: ACM Press, 2001. 97−106.

[14] Keogh E, Kasetty S. On the need for time series data mining benchmarks: A survey and empirical demonstration. In: Proc. of the

8th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. Edmonton, 2002. 102−111.

[15] Madden S, Franklin M. Fording the stream: An architecture for queries over streaming sensor data. In: Proc. of the 18th Int’l Conf.

on Data Engineering. 2002. 555−566.

[16] O’Callaghan L, Mishra N, Meyerson A, Guha S, Motwani R. Streaming-Data algorithms for high-quality clustering. In: Proc. of the

18th Int’l Conf. on Data Engineering. Washington: IEEE Computer Society, 2002. 685−694.

[17] Zhang T, Ramakrishnan R, Livny M. BIRCH: An efficient data clustering method for very large databases. In: Proc. of the ACM

SIGMOD Int’l Conf. on Management of Data. Montreal, 1996. 103−114.

[18] Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In:

Proc. of the Int’l Conf. on Knowledge Discovery and Data Mining (KDD’96). Portland: AAAI Press, 1996.

[19] Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining

applications. In: Proc. of the ACM SIGMOD Conf. Seattle, 1998. 94−105.

[20] Yang J. Dynamic clustering of evolving streams with a single pass. In: Proc. of the 19th IEEE Int’l Conf. on Data Engineering

(ICDE 2003). Bangalore, 2003. 695−697.

[21] Beringer J, Hüllermeier E. Online-Clustering of parallel data streams. Data and Knowledge Engineering, 2006,58(2):180−204.

[22] Sakurai Y, Panadimitriou S, Sun J, Faloutsos C. Braid: Stream mining through group lag correlations. In: Proc. of the ACM

SIGMOD. Baltimore, 2005. 180−201.

[23] Dai BR, Huang JW, Yeh MY, Chen MS. Adaptive clustering for multiple evolving streams. IEEE Trans. on Knowledge and Data

Engineering, 2006,18(9):1166−1180.

TU Li was born in 1980. She is a Ph.D.
candidate at the Institute of Information
Science and Technology, Nanjing
University of Aeronautics and Astronautics
and a teacher at the Department of
Computer Science, Jiangyin Polytechnic
College. Her research areas are data mining
and parallel computation.

 ZOU Ling-Jun was born in 1984. She is a
master candidate at the Department of
Computer Science and Engineering,
Yangzhou University. Her research areas
are optimization algorithm and parallel
computation.

CHEN Ling was born in 1951. He is a
professor and Ph.D. supervisor at the
Department of Computer Science and
Engineering, Yangzhou University and a
CCF senior member. His research areas are
data mining, bioinformatics and parallel
computation.

