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Abstract:  This paper proposes a compression scheme which quickly compresses the raw data from multiple 
streams into a compressed synopsis. The synopsis allows to incrementally reconstruct the correlation coefficients 
without accessing the raw data. A modified k-means algorithm is developed to generate clustering results and 
dynamically adjust the number of clusters in real time so as to detect the evolving changes in the data streams. 
Finally, the framework is extended to support clustering on demand (COD), where a user can query for clustering 
results over an arbitrary time horizon. A theoretically sound time-segment partitioning scheme is developed so that 
any demand time horizon can be fulfilled by a combination of those time-segments. Experimental results on 
synthetic and real data sets show that the algorithm has higher clustering quality, speed and stability than other 
methods and can detect the evolving changes of the data streams in real time. 
Key words:  clustering; data stream; correlation analysis 

摘  要: 提出基于相关分析的多数据流聚类算法.该算法将多数据流的原始数据快速压缩成一个统计概要.根据

这些统计概要,可以增量式地计算相关系数来衡量数据间的相似度.提出了一种改进的 k-平均算法来生成聚类结果.
改进的 k-平均算法可以动态、实时地调整聚类数目,并及时检测数据流的发展变化.还将算法应用到按照用户要求

的聚类问题(COD),使得用户可以在任意的时间区间上查询聚类结果.提出了一种合理的时间片断划分机制,使得用

户指定的任意时间区间都可以由这些时间片断组合而成.在模拟和真实数据上的实验结果都表明,该算法比其他方

法具有更好的聚类质量、速度和稳定性,能够实时地反映数据流的变化. 
关键词: 聚类;数据流;相关分析 

                                                             
∗ Supported by the National Natural Science Foundation of China under Grant Nos.60673060, 60773103 (国家自然科学基金); the 

Natural Science Foundation of Jiangsu Province of China under Grant No.BK2008206 (江苏省自然科学基金) 
Received 2007-08-11; Revised 2008-01-10, 2008-03-11; Accepted 2008-07-02 



 

 

 

屠莉 等:基于相关分析的多数据流聚类 1757 

 

中图法分类号: TP18   文献标识码: A 

1   Introduction 

Extensive research has been done for mining data streams[1], including those on the stream data 
classification[2,3], mining frequent patterns[4−6], and clustering stream data[4,7−16]. There are various applications 
where it is desirable to cluster the streams themselves rather than the individual data records within them. In this 
paper, we study the clustering of multiple and parallel data streams. Our goal is to group multiple streams with 
similar behaviors and trends together, instead of clustering the data records within one data stream. Therefore, the 
methods designed for clustering static data sets[17−19] cannot be directly applied to multiple data streams. There has 
been some previous works on clustering multiple data streams[20−23]. Yang[20] used the weighted aggregation of 
snapshot deviations as the distance measure between two streams, which can observe the similarity of data values 
but ignore the trends of streams. Beringer et al.[21] proposed a method which used a discrete Fourier transforms 
(DFT) approximation of the original data, and with that method the distance between two streams was computed by 
using their low-frequency coefficients. Since DFT transformation preserves the Euclidean distances, the DFT 
distance is equivalent to the Euclidean distance of the data streams. 

A serious limitation of the above previous works is that they are all based on the Euclidean distance of data 
records, but the important trend information contained in data streams is typically discarded by clustering methods 
based on Euclidean distance. This is true because data streams with 
similar trends may not be close in their Euclidean distance. As an 
illustration, Figure 1 shows the trends of three stocks on Nylon, 
chemical fiber, and CPU chip respectively. Although the two stocks 
on CPU chip and chemical fiber are closer in their data values and 
hence their Euclidean distance, the trends of the two stocks on Nylon 
and Chemical fiber are obviously closer. However, such trends of 
stocks can be suggested by their higher correlation coefficient. If 
with Euclidean distance, we may conclude that the two stocks on 
CPU chips and chemical fiber are more similar. 

In this paper, we propose a multiple streams clustering algorithm based on the correlation analysis. We 
propose a novel compression scheme that quickly compresses the raw data from multiple streams into a compressed 
synopsis. The synopsis allows us to incrementally reconstruct the correlation coefficients without accessing the raw 
data. A modified k-means algorithm is developed to generate the clustering results. The k-means algorithm is 
modified so that it can dynamically adjust the number of clusters in real time, and therefore can detect the evolving 
changes in the data streams. Finally, we extend the framework to support clustering on demand (COD), where a user 
can query for clustering results over an arbitrary time horizon. A theoretically sound time-segment partitioning 
scheme is developed so that any demand time horizon can be fulfilled by a combination of those time-segments. 
Experimental results on synthetic and real data sets show that our algorithm is higher in clustering speed, quality 
and stability than other methods, and can detect the evolving changes in the data streams in real time. 

2   Background 

2.1   Clustering data streams 

A data stream X is a sequence of data items x1,…,xk arriving at discrete time steps t1,t2,…,tk. We assume that 

Fig.1  Price of stocks on nylon, 
chemical fiber, and CPU chips 

Nylon 

CPU chip

Chemical fiber
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there are n data streams {X1,...,Xn} at each time step m, where Xi={xi1,...,xim}, 1≤i≤n, and xij(j=1,...,m) is the value of 
stream Xi at the time j. 

The problem of clustering multiple data streams is defined as follows. Given the time horizon for clustering L 
and the number of clusters k, the clustering algorithm partitions n data streams into k clusters C(L)={C1(L),...,Ck(L)} 
that minimizes some objective function measuring the quality of clustering in the period [t−L+1,t], where t is the 
time when the analysis is performed. The given clusters Cj(L), j=1,...,k, should satisfy 

 1 ( 1)
1 1

( ) , ( ) { ( ),..., ( )},  where ( ) { ,..., },  1,...,
k k

j j n i i t L it
j j

C L C L X L X L X L x x i n− +
= =

= ∅ = = =∩ ∪  (1) 

2.2   Attenuation coefficient 

In the stream data analysis, in order to recognize the evolving changes of data streams, newer data records are 
often given more weights than the older ones. Therefore, we use an attenuation coefficient λ∈[0,1] to gradually 
lessen the significance of each data record over time. Suppose t is the current time and a data point xi is received at 
time i, then we replace the original value of xi by xi(t)=λt−ixi in our analysis. 

2.3   Segment 

We first consider the fixed-length clustering and then extend the algorithm to the arbitrary-length clustering of 
COD in Section 4. Given a fixed length L, at any time t, we report in real time the clustering results for the data 
streams in the time horizon [t−L+1,t]. To support efficient processing, we partition the data streams of length L into 
m time segments of equal length l=L/m. Whenever a new segment of length l accumulates (Fig.2), we re-compute 
the clustering results. 

 
 
 
 
 
 

Fig.2  A fixed length L is divided into m segments of size l 

3   The Correl-Cluster Algorithm 

The framework of the proposed CORREL-cluster algorithm is shown in Fig.3. 
The algorithm keeps detecting and reporting the clusters for the most recent data streams of the fixed length L. 

For every l time steps, it first computes the compressed correlation representation (CCR) and the correlation 
coefficients of the data streams, and then clusters the streams based on their correlation coefficients. Since the 
number of clusters k may be changing, CORREL-cluster also employs a new algorithm to dynamically adjust k in 
order to recognize the evolving behaviors of the data streams (Line 12). The algorithm is schematically shown in 
Fig.4. 
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Fig.3  Overall process of CORREL-cluster            Fig.4  Illustration of CORREL-cluster 

3.1   Correlation analysis of data streams 

Before describing the details of our algorithm, we first overview the concepts of correlation analysis. 
We first define the correlation coefficients for two data streams. For data segments of two streams X=(x1,...,xn) 

and Y=(y1,...,yn), their correlation coefficient is defined as 

1

2 2
1 1

( )( )

( ) ( )

n
i ii

XY n n
i ii j

x x y y

x x y y
ρ =

= =

− −
=

− −

∑
∑ ∑

, 

where 1( ) /n
iix x n

=
= ∑  and 1( ) /n

iiy y n
=

= ∑ . 

From the definition, we can see that |ρXY|≤1. A large value of |ρXY| indicates a strong correlation between 
streams X and Y, and ρXY=0 means X and Y are uncorrelated. Since it is often impossible to store all the past raw 
data in the stream, we need to compress the raw data and only retain a synopsis for each time segment of a data 
stream. 

Theorem 3.1. The correlation coefficient ρXY between two sequences X and Y can be calculated with the 
information ix∑ , 2

ix∑ , iy∑ , 2
iy∑ , and i ix y∑ . 

The proof of Theorem 3.1 is omitted due to the limited space. Based on Theorem 3.1, in CORREL-cluster, for 
any time segment, we store a compressed synopsis for the multiple data streams instead of the whole raw data. 

Definition 3.1 (compressed correlation representation). Given n data streams X1,...,Xn, suppose the current 
time is t, the time segment length is l, then the compressed correlation representation of this time segment is defined 

as ( ( , ), ( , ), ( , )S t l Q t l C t l , where vectors 1 2( , ) ( , ,..., )nS t l S S S= , 1 2( , ) ( , ,..., )nQ t l Q Q Q=  and matrix C(t,l)=[Cij]. 

Components of the vectors ( , )S t l , ( , )Q t l  and matrix C(t,l) are defined as: 

 
1

( )
t

i ik
k t l

S x t
= − +

= ∑ , 2

1
( )

t

i ik
k t l

Q x t
= − +

= ∑ , 
1

( ) ( ), , 1,..., ,
t

ij ik jk
k t l

C x t x t i j n i j
= − +

= = <∑  (2) 

here, xik(t) is the kth datum of the ith stream at time t. 
The compressed correlation representation provides enough information to compute the correlation coefficients 

between any two streams in n data streams X1,...,Xn. Based on Theorem 3.1 and the definition of correlation 
coefficient, we can easily get the following theorem. 

Theorem 3.2. Let Xi and Xj, i,j=1,...,n, be data segments of two streams, their correlation coefficients 
i jX Xρ . 

1. procedure CORREL-cluster 
2. t=0; 
3. while data stream is not terminated 
4.     set t=t+1; 
5.     read new data record xk(t), k=1,…,n, one from

      each of the n data streams; 
6.     if (t mod l=0) then 
7.       calculate the CCR of the new time segment;
8.       update CCRs of the existing segments; 
9.       if t=L then compute initial CCR 

for time window [1,L]; 
10.       else incrementally update CCR 

for the new time window 
11.       call correlation-k-means(); 
12.       call adjust_k(); 
13.       output the clustering result; 
14.     endif 
15. end while 
16. end procedure 

L=m*l
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can be computed by 

 
2 2

1

1 1i j

ij i j

X X

i i j j

C S S
n

Q S Q S
n n

ρ
−

=
⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟
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 (3) 

Example 1. Let l=10 and t=1, data streams X1=(18,23,21,17,24,22,25,19,21,20) and X2=(19,22,24,20,22,23,24, 
20,16,18) in the time period 1 to 10. Since S1=210, S2=208, Q1=4470, Q2=4390, C12=4402, the compressed 
correlation representation are [(210,208),(4470,4390),4420]. By Theorem 3.2, the correlation coefficient of X1 and 
X2 is 

1 2X Xρ =0.9713. 

3.2   Update of the compressed correlation representation 

Let t−tc=Δt and λ be the attenuation coefficient, at any time t>tc, the data values of xik(tc) are replaced by xik(t): 
( ) ( )c c c ct t t i t t t it i t

ik ik ik ik ik cx t x x x x tΔλ λ λ λ λ− + − − −−= = = = . 

Since the values of xik(tc) are updated, the compressed correlation representation needs to be modified 

accordingly. Let ( , )i c cS t l′ , ( , )i c cQ t l′  and ( , )ij c cC t l′  be the updated values of ( , )i c cS t l , ( , )i c cQ t l  and Cij(tc,lc), 

then ( , ) ( , )t
i c c i c cS t l S t lΔλ′ = , 2( , ) ( , )t

i c c i c cQ t l Q t lΔλ′ =  and 2( , ) ( , )t
ij c c ij c cC t l C t lΔλ′ = . We notice that such an update 

happens not at every time step, but every l step (Line 8 in Fig.3). Whenever a new time segment comes in, we 
compute the new compressed correlation representation. 

Example 2. In Example 1, let λ=0.9, then at time t=3, since Δt=2, therefore S1=210×0.92=170.10, S2=208× 
0.92=168.48, Q1=4470×0.94=2932.767, Q2=4390×0.94=2880.279, C12=4402×0.94=2888.1522. 

3.3   Aggregation of compressed correlation representation 

In CORREL-cluster, for a user specified clustering length L=ml, we need to compute the correlation 
coefficients for data segments in time window [t−L+1,t] so as to cluster the data streams. Since we compute a 
compressed correlation representation for each time segment with length l, we need to combine them with the 
compressed correlation representation for the time window [t−L+1,t]. 

In each time window, there are m time segments and m compressed correlation representations 

[ ( 1, ), ( 1, ), ( 1, )]S t vl l Q t vl l C t vl l− + − + − +  for v=1,...,m. Similarly, we denote the compressed correlation 

representation for time window [t−L+1,t] as [ ( 1, ), ( 1, ), ( 1, )]S t L L Q t L L C t L L− + − + − + . Let the ith component of 

( 1, )S t L L− +  and ( 1, )Q t L L− +  be ( 1, )iS t L L− +  and ( 1, )iQ t L L− +  respectively, then we have (iS t L−  

1, )L+ =
1

( 1, )
m

i
v

S t vl l
=

− +∑ , 
1

( 1, ) ( 1, )
m

i i
v

Q t L L Q t vl l
=

− + = − +∑  and 
1

( 1, ) ( 1, )
m

v
C t L L C t vl l

=

− + = − +∑ . 

We use the above equations to compute the compressed correlation representation when we receive the first m 
time segments (Line 9 of Fig.3). For later updates (Line 10), we do not need to redo the summation. In fact, we can 
obtain compressed correlation representation for the new time window [t−L+l+1,t+l] by 
 ( 1, ) ( 1, ) ( , ) ( 1, )S t L l L S t L L S t l l S t ml l− + + = − + + + − − +  (4) 

 ( 1, ) ( 1, ) ( , ) ( 1, )Q t L l L Q t L L Q t l l Q t ml l− + + = − + + + − − +  (5) 
 ( 1, ) ( 1, ) ( , ) ( 1, )C t L l L C t L L C t l l C t ml l− + + = − + + + − − +  (6) 

3.4   Dynamic k-means algorithm 

We propose a dynamic k-means algorithm to cluster the data streams in the user-specified window. In the 
algorithm, the distance between two data streams X and Y is measured by using the reciprocal of the correlation 
coefficient d(X,Y)=1/ρXY. The correlation-k-means algorithm is shown in Fig.5. 
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The fundamental idea behind this algorithm is that two consecutive clustering results are not changing very fast 
over a short time gap l, and may significantly overlap with each other. The algorithm could take very few steps to 
converge if it starts from the clustering result on the data segment in the previous time window. 

To capture the dynamic evolution of data streams, we continuously update the number of clusters k every time 
a new data segment with length l is received. Noticing that the number of the clusters could not change abruptly and 
frequently in a short time gap l, we will only consider the cases where the number of clusters increases or decreases 
by one. The adjust_k algorithm is shown in Fig.6. In the algorithm, the number of the clusters is adjusted by 
splitting or emerging some current clusters, and the clustering quality is measured by an objective function 

1 1
(1/ )

i

j i

nk

X C
i j

G ρ
= =

= ∑∑ , where 
j iX Cρ  is the correlation coefficient between the data stream Xj and the ith cluster center 

Ci, which consists of streams from X1 to 
inX . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5  Algorithm for clustering                   Fig.6  Algorithm for adjusting k 

4   Clustering on Demand 

In some applications, the length of the time window depends on users’ demands[23]. Here, we extend our 
clustering algorithm to support clustering on demand (COD). We call the extended algorithm CORREL-COD. The 
CORREL-COD algorithm consists of online and offline processes which are performed in a pipelined fashion. The 
online component calculates the summary information in correlation parameters, whereas the offline part performs 
clustering. 

We assume that the maximum time horizon over which the user will demand is L. Namely, we only need to 
preserve information for the time period [t−L+1,t]. 

We assemble a combination of partitioned time segments in such a way that minimizes the difference between 
the user-specified time horizon r and the best approximate time horizon r′ over which we can get compressed 
correlation representation synopsis. 

Let L=2d and m be the maximum number of segments the memory can store. The basic idea of our scheme is 
that the segments containing newer data will have shorter lengths, leading to higher clustering accuracy for newer 
data so as to make the difference |r−r′| as small as possible. We assume m>logL. In our scheme, we first arrange 

Algorithm correlation-k-means(k,Centerk,Rk) 
Input: number of the clusters k, sets of the center 
       points, Centerk; current clustering result Rk; 
Output: updated clustering results Rk and its 

objective function value Gk. 
begin 

1. repeat 
 2.    for i=1 to n 

     calculate the correlation distances between 
        stream Xk and centers of k clusters and assign

Xk to the cluster with the shortest distance; 
       end for 

3.  compute the new center of each cluster, 
 update the set of centers Centerk; 

4. until no change of clustering result 
5. calculate the objective function Gk. 

end 

Algorithm adjust_k(k,Centerk,Rk)
Input: number of the clusters k, sets of the center 
     points Centerk, current clustering result Rk; 
Output: updated number of clusters k′, updated 

clustering result Rk’ and its objective 
function value Gk. 

begin 
1  Calculation of Rk+1 

Among all the clusters, choose the data stream X which is 
the farthest from its cluster center, set a new cluster with X
as its center; 

    Centerk+1=Centerk∪{X} 
    correlation-k-means(k+1,Centerk+1,Rk+1) 
2  Calculation of Rk−1 

 Choose two closest clusters, suppose their centers are 
 C1 and C2 respectively, 
 combine these two clusters into a new cluster, 
 compute the center C3 of the new cluster 
 Centerk−1=Centerk∪{C3}−{C1,C2} 
 correlation-k-means(k−1,Centerk−1,Rk−1) 

3  choose the one with best G form Rk−1,Rk,Rk+1, 
  set k′ and Rk′ accordingly; 

end 
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segments with lengths of 1,2,22,23,...,2d−1, respectively. Let m′=m−logL=m−d, and Si denotes the segment with 
length 2i. For the m' unassigned segments, we assign them according to the following rule. 

We first remove Sd−1, replace the region of Sd−1 by two more Sd−2, and then reduce m′ by one. If m′>0, we will 
keep splitting a larger segment into two smaller segments. When there are still Sd−2 segments, we split the most 
recent Sd−2 into two Sd−3, and then reduce m′ by one, until all Sd−2 segments are removed or m′=0. If all Sd−2 
segments are removed and m′>0, we will split the most recent Sd−3 into two Sd−4 and reduce m′ by one. We repeat 
this process until m′=0. 

Given L, m, and m′=m−logL, it is easy to show that with our scheme, the maximum length of any segment is 2k, 
where 
 k=argmaxi(m′≤Ci)−1,Ci=2d−i+2−(d−i+2) (7) 

Let Ti be the number of segments of type Si, we can prove that (the proof is omitted): 
 Tk=Ck+1−m′+1, Tk−1=2(2d−k−Tk)−1, Ti=1,i=0,1,…,k−2, Ti=0 for i>k (8) 

Example 3. Let L=1024, m=20, d=10. Then m′=m−logL=10. By Eq.(7), we get C9=3, C8=10, C7=25. This gives 
k=7 since argmaxi(m′≤Ci)=8. Then by Eq.(8), we get T7=10−10+1=1, T6=2(2(10−7)−1)−1=13, and T5=T4=T3=T2=T1= 
T0=1. 

Theorem 4.1. With the above partitioning scheme, we have m segments in total. 
Proof:  The number of segments is 

 
1 1

1
0

1 1

2(2 ) 1 ( 1) 2 2 2 ( 1) 2

       2 2 ( 3) 3 .

k
d k d k d k

i k k k k
i

d k d k

T T T k T k C m k

d k m k m d m

− − + − +
+

=

− + − +

′= + − − + − = − + − = − − + + −

′ ′= − + − + + + − = + =

∑  □ 

Theorem 4.2. Using the above partitioning scheme, the total length of the m segments is L−1. 
Proof:  The total length of all segments is 

 1 0 1 1
1 0

0
2 2 2 ... 2 2 2 [2(2 ) 1] 2 1 2 1 1

k
i k k k k d k k d

i k k k k
i

T T T T T T L− − − −
−

=

= + + + = + − − + − = − = −∑ . □ 

Example 4. In Example 3, 

0
1 13 1 1 1 1 1 1 20

k

i
i

T m
=

= + + + + + + + = =∑ , 7 6 5 4 3 2 0

0
2 2 1 2 13 2 1 2 1 2 1 2 1 2 1 1023 1

k
i

i
i

T L
=

= × + × + × + × + × + × + × = = −∑ . 

Theorem 4.3. Suppose that the user demands a query for a horizon of length r≤L. With the above partitioning 
scheme, suppose r′ is the total length of a set of selected segments closest to r, then we can get r′−r≤2k, where 
k=argmaxi(m′≤Ci)−1. 

Proof:  To form a set of the most recent segments with a total length closest to r, we can incrementally add S1, 
S2,… to the set until the total length of the selected segments r′ is larger than r. Suppose the longest segment in the 
resulting set is Sg, since r<L we have g≤k, and r′−r≤2g≤2k, here k=argmaxi(m′≤Ci)−1 by Eq.(7). □ 

The above results show that our partitioning scheme achieves two goals. First, we assign shorter segments to 
newer data and thus give newer data higher precision. Second, the largest possible difference between the length of 
the approximate combination of segments and the user requested length is lowered to 2g, where g<k. It can easily be 
seen from Eq.(7) that k<logL−1, therefore the difference r′−r is much smaller than L/2. 

5   Experimental Results 

To evaluate the performance of our algorithms, we test them by using both synthetic data and real data on a PC 
with 1.7GHz CPU and 512 MB memory running Window XP. The algorithms are coded by Visual C++ 6.0. 
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5.1   Testing data 

We generate the synthetic data in the same way as in Ref.[21]. For each cluster, we first define a prototype p(⋅) 
which is a stochastic process defined by a second-order difference equation: 

 
( ) ( ) ( )
( ) ( ) ( ),  0, ,2 ,...

p t t p t p t t
p t t p t u t t t t

Δ Δ
Δ Δ Δ

′+ = + +
′ ′+ = + =

 (9) 

where u(t) are independent random variables uniformly distributed in an interval [−a,a]. The data streams in the 
cluster are then generated by “distorting” the prototype, both horizontally (by stretching the time axis) and 
vertically (by adding noise). The formulation for a data stream x(⋅)is defined as: 
 x(t)=p(t+h(t))+g(t) (10) 
where h(⋅) and g(⋅) are stochastic processes generated in the same way as the prototype p(⋅). The constant a that 
determines the smoothness of a process can be different for p(⋅), h(⋅), and g(⋅), such as 0.04, 0.04, 0.5, respectively. 

We can then generate different clusters by generating different prototype functions p(⋅). For each prototype 
function, we randomly distort the prototype to generate multiple data streams in that cluster. 

The real data set (Fig.7) that we use contains the average daily temperatures of 169 cities around the world, 
recorded from Jan.1, 1995 to the present. Each city is regarded as a data stream and each stream has 3 416 points. 

 
 
 
 
 
 
 
 
 

Fig.7  Daily temperatures for 169 cities around the world 

5.2   Performance analysis on CORREL-cluster 

5.2.1   Clustering results 
We ran CORREL-cluster on the real data set downloaded from the website http://www.engr.udayton.edu/ 

weather/default.htm to cluster cities based on the recorded daily temperatures. We set L=360 and l=30. The input of 
the algorithm is the daily temperatures of cities around the world. CORREL-cluster gave five clusters each of which 
contains cities mostly in the same continent and belonging to the same temperature zone. The correct rate is around 
85% to 89%. The results are shown in Figs.8~12, where each figure illustrates one cluster. 

 
 
 
 
 
 
 
 
 

Fig.8  Cluster 1: Cities in Asia                  Fig.9  Cluster 2: Cities in Europe 
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Fig.10  Cluster 3: Cities in Oceania               Fig.11  Cluster 4: Cities in Africa 
 
 
 
 
 
 
 
 
 

Fig.12  Cluster 5: Cities in South America 

5.2.2   Quality 
We evaluate the quality of the clustering from CORREL-cluster by comparing with that from DFT-cluster[21] 

(30 DFT coefficients). Figure 13 shows a comparison of the clustering quality on the real city-temperature data set 
by CORREL-cluster and DFT-cluster for various numbers of 
segments. The quality is measured by the correct rate, the ratio 
of the number of cities that are correctly labeled to the total 
number of cities. 

Since we use a fixed time horizon L=360, the larger the 
number of segments is, the more frequently clustering is 
executed. Thus, for both algorithms, the quality improves when 
the number of segments increases. However, as we can see from 
Fig.13, CORREL-cluster always has a better quality than 
DFT-cluster. 

5.2.3   Speed 
Since the clustering on the real data set is too fast, we use synthetic data sets to test the processing speed of 

CORREL-cluster. We generate 6 synthetic data sets each of which contains 100 data streams. Each data stream has 
65 536 data elements. Again, we compare it with DFT-cluster (250 DFT coefficients). The experimental results 
show that the executing time for CORREL-cluster is shorter than that of DFT-cluster for every synthetic data set. 
Figure 14 shows that the average processing time per segment for CORREL-cluster is 0.928 seconds, whereas 1.2 
seconds for DFT-cluster with 250 DFT coefficients. DFT-cluster needs even longer processing time when more 
coefficients are used. With 1 500 DFT coefficients, DFT-cluster takes in an average over 7 seconds. Reducing the 
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Fig.13  Clustering quality of CORREL-cluster
and DFT-cluster on real data 
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number of DFT coefficients can save time but will lead to worse quality. As we see in Fig.15, DFT-cluster with 250 
DFT coefficients has much worse quality than CORREL-cluster on these synthetic data sets. 

 
 
 
 
 
 
 
 

Fig.14  Computation time of CORREL-cluster and        Fig.15  Quality of CORREL-cluster and 
DFT-cluster on synthetic data                     DFT-cluster on synthetic data 

5.2.4   Dynamic number of clusters 
CORREL-cluster requires an initial value k for the number of clusters. We study its sensitivity to k by trying 

different initial values of k. Figure 16 shows the clustering results of CORREL-cluster on a synthetic data set with 
three clusters for different initial values of k, including 2, 3,4, 6, 8, 10 and 20. We can see that the number of 
clusters given by CORREL-cluster soon becomes the same regardless its initial value, which indicates that the 
initial value of k has little influence on the clustering performance. 

 
 
 
 
 
 
 
 
 

Fig.16  Number of clusters found by CORREL-cluster for different initial values of k 

5.3   Performance analysis on CORREL-COD 

5.3.1   Scalability 
To evaluate the scalability of the online processing, we test our CORREL-COD algorithm and 

ADAPTIVE-cluster[23] with several randomly generated synthetic data sets of sizes varying from 1 000 to 10 000. 
As we see in Fig.17, the execution time for both algorithms increases linearly with the number of data points, but 
CORREL-COD is always faster than ADAPTIVE-cluster. 

 
 
 
 
 
 

Fig.17  Comparison of the scalability of CORRL-COD and ADAPTIVE-cluster 
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5.3.2   Quality 
We measure the quality of clustering with Grawdata/GCOD, where Grawdata denotes the objective function obtained 

by clustering the raw data directly without segmentation and GCOD denotes the objective function by clustering 
based on the summary information retrieved by the online processor. 

Figure 18 shows the quality of clustering on two simulated data sets for different number of segments. We see 
that the larger the number of segment is, the more precise our algorithm achieves. This is because the difference 
between the user-specified length and the length of the approximated statistical information becomes smaller when 
the number of segments increases. From Fig.18, we can see the clustering quality is always above 95%, which 
means that results by our COD algorithm are close to the optimal results that can be obtained from raw data. 

 
 
 
 
 
 

Fig.18  Clustering quality for different numbers of segments 

6   Conclusions 

When our aim is to mine the similarity on the trends of data streams, correlation coefficient is a more 
appropriate measure for similarity between data streams than Euclidean distance in previous data stream clustering 
methods. In this paper, we have developed algorithms CORREL-cluster and CORREL-COD for clustering multiple 
data streams based on correlation coefficients, which supports online clustering analysis over both the fixed and 
flexible time horizons. Since data streams have a high speed and massive volume, we cannot retain the raw data to 
perform the correlation analysis. We have proposed a compression scheme that supports an one-scan algorithm for 
computing the correlation coefficients. We have developed an adaptive algorithm to dynamically determine the 
number of clusters so that CORREL-cluster can detect the evolving behaviors of data streams. Moreover, we have 
developed a novel partitioning algorithm to support the clustering of arbitrary length at the user’s request. 
Experimental results on real and synthetic data sets show that our algorithms are high in clustering quality, speed 
and scalability. 
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