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Abstract:  For the state/event linear temporal logic SE-LTL, an SAT-based Bounded Model Checking procedure 
which avoids the space blow up of BDDs is presented. For SE-LTL−X, it is shown how to integrate the procedure and 
the stuttering equivalent technique. The integration speeds up the verification procedure. Furthermore, a framework 
for model checking concurrent software systems which integrates three powerful verification techniques is 
presented: SAT-based Bounded Model Checking, counterexample-guided abstraction refinement and compositional 
reasoning. In the framework the abstraction and refinement steps are performed over each component separately, 
and the model checking step is symbolic. Example shows that the framework can reduce verification time and 
space. 
Key words:  bounded model checking; abstract; parallel composition 

摘  要: 对线性时态逻辑SE-LTL提出了一种基于SAT的有界模型检测过程,该过程避免了基于BDD方法中状态空

间快速增长的问题.在SE-LTL的子集SE-LTL−X的有界模型检测过程中,集成了stuttering等价技术,该集成有效地加速

了验证过程.进一步提出了一种组合了基于SAT的有界模型检测、基于反例的抽象求精、组合推理 3 种状态空间约

简技术的并发软件验证策略.该策略中,抽象和求精在每一个构件上独立进行.同时,模型检测的过程是符号化的.实
例表明,该策略降低了验证时间和对内存空间的需求. 
关键词: 有界模型检测;抽象;平行组合 
中图法分类号: TP301   文献标识码: A 

1   Introduction 

In order to represent both software implementations and specifications directly without any program 
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annotations or privileged insights into program execution, Chaki et al. proposed a specification language SE-LTL[1] 
which is a state/event derivative of LTL[1]. The state space explosion[2] is the main problem in checking a system 
satisfying an SE-LTL formula. SAT-based Bounded Model Checking (BMC)[2,3] has recently been introduced as an 
effective technique to overcome the state space explosion. Therefore it is necessary to develop a BMC procedure for 
SE-LTL. To the best of our knowledge, at present a BMC procedure does not exist. 

For SE-LTL, we first provide its SAT-based BMC procedure. Given an LKS M, an SE-LTL formula φ and a 
natural number k, our BMC procedure decides whether there exists a computation in M of length k or less that 
violates φ, i.e. M|=kE¬φ. Our BMC is performed by generating a proposition formula, which is satisfiable if and 
only if such a computation exists. For SE-LTL−X properties we further show how to integrate our BMC procedure 
and stuttering equivalent technique[4]. Experiments show that the integration can reduce verification time 
significantly. 

Then we present an efficient verification strategy which combines SAT-based BMC, counterexample-guided 
abstraction refinement[5−7] and compositional reasoning[8]: starting with a coarse initial abstraction, our scheme 
computes increasingly precise abstractions of the target system by analyzing spurious counterexamples until either a 
real counterexample is obtained or the system is found to be correct. Of the three steps in this abstract-verify-refine 
process only the verification stage of our technique requires the explicit composition of a system. The other two 
stages can be performed one component at a time. To the best of our knowledge, our strategy is the first SAT-based, 
counterexample-guided, compositional abstraction refinement scheme to perform verification of linear time 
temporal specifications. 

2   Preliminaries 

2.1   Labeled kripke structure 

Definition 1. A labeled Kripke structure M is a 6-tuple (S,s0,AP,Σ,L,R) where S is a finite non-empty set of 
states, s0∈S is an initial state, AP is a finite set of atomic state propositions, Σ is a finite set of events, L:S→2AP is a 
state-labeling function, R⊆S×Σ×S is a transition relation that must be total, that is, for every state s∈S there is an 
event a∈Σ and a state s′∈S such that R(s,a,s′) holds. 

Given an LKS M=(S,s0,AP,Σ,L,R) we write S(M), s0(M), AP(M), L(M), Σ(M) and R(M) to mean S, s0, AP, L, Σ 
and R respectively. A path π=s0,a0,s1,a1,… of M is an alternating infinite sequence of states and events subject to 
the following: for each i≥0, si∈S, ai∈Σ and R(si,ai,si+1) holds. For the path π=s0,a0,s1,a1,…, we use π(i) to denote 
the i-th state si, use π(i,E) to denote the i-th event ai. We write Path(M) to denote the set of infinite and finite paths 
whose first state is s0(M). 

Definition 2. A path π is a (k,l)-loop with l<k, if (π(k),π(k,E),π(l))∈R and π=u⋅vω, where u=π(0),π(0,E),…, 
π(l−1),π(l−1,E) and v=π(l),π(l,E),…,π(k),π(k,E). We call π simply a k-loop if there is an integer l with 0≤l≤k such 
that π is a (k,l)-loop. 

2.2   Abstraction 

Let M=(S,s0,AP,Σ,L,R) and 0( , , , , , )A A A A A AA S s AP L RΣ=  be two LKSs. We say that A is an abstraction of M, 
written M⊆A iff: 1) APA⊆AP; 2) ΣA=Σ; 3) For every path π=s0,a0,s1,a1,… of M there exists a path 

0 0 1 1, , , ,...s a s aπ ′ ′ ′ ′ ′=  of A such that for each i≥0, i  and ia a′ = A( ) ( )A
i iL s L s AP′ = ∩ . The abstraction of M defined as 

above over-approximates the behaviors of M, that is a behavior of M is also a behavior of A. 

2.3   Existential quotients of labeled kripke structures 

We use the method introduced by Chaki et al. in Ref.[1] to construct abstractions. An abstraction of an LKS M 
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is obtained by quotienting the states of M by a suitable equivalence relation. More precisely, for M=(S,s0,AP,Σ,L,R), 
Let APA⊆AP be a subset of atomic state propositions of M, and let ≈ be an equivalence relation on the states S of M 
that respects APA. The existential quotient of M (with respect to APA and ≈) is the LKS 0( , , , , ,A A A A AA S s AP LΣ=  

)AR  such that: 1) SA=S/≈, the collection of equivalence classes of S; 2) 0 0[ ]As s= ; 3) for all s∈S, LA([s])=L(s)∩ 
APA ; 4) ΣA=Σ; 5) for all s,s′∈S and a∈Σ, ([s1],a,[s2])∈RA  iff there exists 1 1[ ]s s′ ∈ , 2 2[ ]s s′ ∈  such that 

1 2( , , )s a s R′ ′ ∈ . 

We write M/≈ (when the set APA is clearly understood from the context) to denote the abstraction A of M obtained 
in the above manner. 

2.4   Parallel composition 

The notion of parallel composition we consider in this paper is adapted from Ref.[1] which allows for 
communication through shared events only; in particular we forbid the sharing of variables. This restriction 
facilitates the use of compositional reasoning in verifying specification. 

Let 1
1 1 0 1 1 1 1( , , , , , )M S s AP L RΣ=  and 2

2 2 0 2 2 2 2( , , , , , )M S s AP L RΣ=  be two LKSs. M1 and M2 are said to be 
compatible, i.e., that they do not share variables: . The parallel composition of M1 2 1 2S S AP AP∩ = ∩ = ∅ 1 and M2 

is given by 1 1
1 2 1 2 0 0 1 2 1 2 1 2|| ( , , , , , )M M S S s s AP AP L L RΣ Σ= × × ∪ ∪ ∪ , where 1 2 1 2 1 1 2 2( )( , ) ( ) ( )L L s s L s L s∪ = ∪  and 

1 2 1 2(( , ), , ( , ))R s s a s s′ ′  holds iff one of the following holds: 1) a∈Σ1\Σ2 and 1 1 1( , , )R s a s′  holds and 2 2s s′ = ; 2) 
a∈Σ2\Σ1 and 2 2 2( , , )R s a s′  holds and 1 1s s′ = ; 3) a∈Σ1\Σ2, 1 1 1( , , )R s a s′  holds and 2 2 2( , , )R s a s′  holds. 

Let M1 and M2 be as above, and let  be an alternating infinite sequence of states and events of 

M

1 2
0 0 0( , ), ,...s s aπ =

1||M2. The projection π↑Mi of π on Mi consists of (possibly finite) the subsequence of  obtained by 

simply removing all pairs 
0 0, ,...is a

1( , )i
j ja s +  for which aj∉Σi. In other words, we keep from π only those states that belong 

to Mi, and excise any transition labeled with an event not in Σi. We now introduce the following theorems, which is 
useful for our composition verification strategy. 

Theorem 1[1]. Let M1,…,Mn be compatible LKSs, and let π be an infinite alternating sequence of states and 
events of the composition M1||…||Mn. Then π is a path of M1||…||Mn iff, for each i, there exists a path iπ ′  of Mi 
such that π↑Mi is a prefix of iπ ′ . In other words, whether a path belongs to the composition of LKSs can be 

checked by projecting and examining the path on each individual component separately. 
Theorem 2[1]. Let M1,…,Mn be compatible LKSs, and let A1,…,An be respective abstractions of the Mi: for 

each i, Mi⊆Ai. Then M1,…,Mn⊆A1,…,An. In other words, parallel composition preserves the abstraction relation. 

2.5   State/Event linear temporal logic SE-LTL 

Given an LKS M=(S,s0,AP,Σ,L,R), we consider linear temporal logic state/event formulas SE-LTL over the sets 
AP, Σ: :: | | | | | | |p a X G F Uφ φ φ φ φ φ φ φ φ φ= ∧ ∨ . About the semantics of SE-LTL, readers can refer to Ref.[1]. 
We introduce the notation M|=f which represents that for all path π of M, π|=f, and the notation. M|=Ef which 
represents there is a path π of M such that π|=f. 

3   SAT-Based Bounded Model Checking for SE-LTL 

Bounded model checking based on SAT methods has been introduced as a complementary technique to 
BDD-based symbolic model checking. The main idea of bounded model checking is to search for an execution of 
the system of some length k, which constitutes a counterexample for a verified property. 

3.1   Bounded semantics for SE-LTL 

In bounded model checking a crucial observation is that the prefix of a path is finite, it still might represent an 
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infinite path if there is a back loop from the last state of the prefix to any of the previous states. If there is no such 
back loop, then the prefix does not say anything about the infinite behavior of the path. Thus when we define 
bounded semantics for SE-LTL, we must consider whether a finite path represents an infinite behavior. 

Definition 3 (bounded semantics for a loop). Let π be a k-loop. Then an SE-LTL formula f is valid along the 
path π with bound k (written as π|=kf) iff π|=f. 

Definition 4 (bounded semantics without a loop). Let π be a path that is not k-loop. Then an SE-LTL formula 
f is valid along π with bound k (written as π|=kf) iff 0| k fπ =  where i≤k and 

−  iff  iff | i
k pπ = ( ( )); | i

kp L i pπ π∈ = ¬ ( ( ))p L iπ∉ ;  iff | i
k aπ = ( , )a i Eπ≡ ; 

− | i
k f gπ = ∧  iff | i

k fπ =  and | i
k gπ = ; | i

k f gπ = ∨  iff | i
k fπ =  or | i

k gπ = ; 

−  is always false;  iff | i
k Gfπ = | i

k Ffπ = , ,j i j k∃ ≤ ≤ | j
k fπ = ; | i

k Xfπ =  iff i≤k and 1| i
k fπ += ; 

− | i
k fUgπ =  iff ,  [ | j

kj i j k gπ∃ ≤ ≤ =  and . , , | ]n
kn i n k fπ∀ ≤ < =

We use the notation M|=kEf to represent that there exists a path π of M such that π|=kf. 
Theorem 3. Let AP be a set of propositions, M be an LKS over AP, π be a path of M, f be an SE-LTL formula, 

and k be a bound. Then π|=kf implies π|=f. 
Definition 5[9]. For every LKS M and an SE-LTL property f, the natural number k called a CT of f if and only 

if the following condition holds: if there is no counterexample to f in M of length k or less, then M|=f. 
Theorem 4. Let AP be a set of propositions, M be an LKS over AP, π be a path of M, f be an SE-LTL formula, 

and k be a natural number. Then M|=Ef implies there exists a bound k≤|M|×2|f| such that M|=kEf. In other words, 
|M|×2|f| is a CT of f. 

Proof:  In Ref.[1] it has shown that every SE-LTL formula f can be translated into a Büchi automaton B(f) 
such that B(f) accepts exactly the words (paths) that satisfy f. Therefore existential SE-LTL model-checking can be 
done as follows: Given an SE-LTL formula f, construct B(f), a Büchi automaton that accepts exactly those paths that 
satisfy f. Then, check whether M×B(f) is non-empty. It is straightforward to see that M|=Ef if and only if M×B(f) is 
nonempty. Thus, SE-LTL model checking is reduced to the question of Büchi automaton non-emptiness, i.e., 
proving that there is a word accepted by the product automaton M×B(f). In order to prove non-emptiness, one has to 
show that there is a computation of M×B(f) passing through an accepting state an infinite number of times. That is 
there exists a path in M×B(f) that starts with the initial state and ends with a cycle in the strongly connected 
component including an accepting state. This path can be chosen to be a k-loop with k bounded by |M|×2|f| which is 
the size of M×B(f). If we project this path onto its first component, the original LKS, then we get a path π that is a 
k-loop and in addition fulfills π|=f. By the definition of the bounded semantics this also implies π|=kf. 

3.2   Translation 

Given an LKS M, an SE-LTL formula f and a bound k, we will construct a proposition formula [M,f]k. Let 
s0,a0,…sk,ak be a finite sequences of states and events on a path π. Each si represents a state at time step i and 
consists of an assignment of truth values to the set of state variables. Each ai represents an event at time step i and 
consists of an assignment of truth values to the set of event variables. The formula [M,f]k encodes constraints on 
s0,a0,…sk,ak such that [M,f]k is satisfiable iff π is a witness for f. The definition of formula [M,f]k will be presented 
as three separate components. We first define a proposition formula  [M]k that constraints s0,a0,…sk,ak to be a valid 
path starting from the initial state. We then define the loop condition, which is a proposition formula that is 
evaluated to true only if the path π contains a loop. Finally, we define a proposition formula that constrains π to 
satisfy f. 
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i iDefinition 6 (unfolding the transition relation). For the bound k, we define 
1

0 10
[ ] : ( ) ( , , )

k

k ii
M I s R s a s

−

+=
= ∧ , 

where I(s0) is true if and only if s0 is the initial state. 
The translation of an SE-LTL formula depends on the shape of the path π. We define the proposition formula 

lLk to be true if and only if there is a transition from sate sk to state sl. 
Definition 7 (loop condition). For two integers k,l with k≥l≥0, let lLk:=R(sk,ak,sl). 
Depending on whether a path is a k-loop, we have two different translations of an SE-LTL formula f. First we 

consider the case where the path is a k-loop. We give a recursive translation of an SE-LTL formula f for a k-loop 

path π. The translation of f recurses over its subterms and the states in π. The intermediate formula  depends [ ] i
l k⋅

on three parameters: l,k and i. We use l for the start position of the loop, k for the bound, and i for the current 
position in π. 

Definition 8 (translation of an SE-LTL formula on a (k,l)-loop). 

− ; ; [ ] : ( )i
l k ia a a= ≡ [ ] : ( );  [ ] : [ ] [ ]i i i i

l k i l k l k l kp p L s f g f g= ∈ ∧ = ∧ [ ] : [ ] [ ]i i i
l k l k l kf g f g∨ = ∨

i

 

− ; [ ] : ( )i
l kp p L s¬ = ∉ [ ] :i

l kXf = if i<k then  else 1[ ] i
kf + [ ]l

kf  

− ;  
min( , )

[ ] : [ ]
k

i i
l k l kj i l

Ff f
=

= ∨
min( , )

[ ] : [ ]
k

i i
l k l kj i l

Gf f
=

= ∧

h
k−

11 1
[ ] : ( [ ] [ ] ) ( [ ] [ ] [ ] )

jk i i k
i i h i h

l k l k k l k l k lj i h i j i h i h i
fUg g f g f f

−− −

= = = = =
= ∨ ∧ ∧ ∨ ∨ ∧ ∧ ∧ ∧  

For the case where π is not a k-loop, the translation can be treated as a special case of the k-loop translation. 
For LKS with total transition relations, every finite path π can be extended to an infinite one. Since the property of 
the path beyond event ak is unknown, we make a conservative approximation and assume all properties beyond ak 
are false. 

Definition 9 (translation of an SE-LTL formula without a loop). 

− [ ] ; ; ; : ( )i
k ia a a= ≡ [ ] : ( );  [ ] : [ ] [ ]i i i i

kk i k kp p L s f g f g= ∈ ∧ = ∧ [ ] : ( )i
k ip p L s¬ = ∉ i

k[ ] : [ ] [ ]i i
k kf g f g∨ = ∨  

− [ ] if i<k then :i
kXf = 1[ ] i

kf +  else false; [ false; ] : [ ] ;[ ] :
k

i i
k kj i

Ff f Gf
=

= ∨ =i
k )h

k

1
[ ] : ([ ] [ ]

jk
i i
k kj i h i

fUg g f
−

= =
= ∨ ∧ ∧  

Combining all components, the encoding of a bounded model checking problem in proposition logic is defined 
as follows. 

Definition 10 (general translation). Let M be an LKS, f be an SE-LTL formula, and k be a bound. We define 

0

0
[ ] : ([ ] ( [ ] ))

k

k k l k ll
f f L f

=
= ∨ ∨ ∧ 0

k  and [M,f]k:=[M]k∧[f]k. 

The translation scheme guarantees the following theorem, which we state without proof. 
Theorem 5. Let M be an LKS, f be an SE-LTL formula, and k be a bound. Then [M,f]k is satisfiable if and only 

if M|=kEf. 
Thus, the reduction of bounded model checking to SAT is sound and complete with respect to the bounded 

semantics. The following Corollary 1 is straightforward from Theorem 4 and Theorem 5. 
Corollary 1. Let M be an LKS, f be an SE-LTL formula, and k be a bound. M|=Ef if and only if there exists an 

integer k≤|M|×2|f| such that [M,f]k is satisfiable. 

3.3   An example 

Let us consider the mutual exclusion example modeled by a Petri net[10] PN=(P,T,s0,F), where P={p1,…,p5} is 
a set of places, T={t1,t2,t3,t4} are a set of transitions, s0(p1)=s0(p3)=s0(p5)=1 and s0(p2)=s0(p4)=0 is the initial state, 
F={(p1,t1),(p3,t1),(t1,p2),(p2,t2),(t2,p1),(t2,p3),(p3,t3),(p5,t3),(t3,p4),(p4,t4),(t4,p3),(t4,p5)} is a set of arcs. Each state s of 
the system PN is represented by five bit variables: p1,p2,p3,p4,p5. We use two bit variables to encode events: 00↔t1, 
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01↔t2, 10↔t3, 11↔t4. We use a[1] for the high bit and a[0] for the low bit. 
The initial state is represented as follows: I(s):=p1∧(¬p2)∧p3∧(¬p4)∧p5. 
The transition relation is represented as follows, 

1 1 2 3 3 4 4 5 5

1 2 2 3 4 4 5 5

3 3 4 5 5 1 1 2 2

( , , ) : ( ( ) ( ) [0] [1])
                   ( ( ) ( ) [0] [1])
                   ( ( ) ( ) [0] [1])
 

R s a s p p p p p p p p p a a
p p p p p p p p a a
p p p p p p p p p a a

′ ′ ′ ′ ′ ′= ∧ ¬ ∧ ∧ ∧ ¬ ∧ ↔ ∧ ↔ ∧ ¬ ∧ ¬ ∨
′ ′ ′ ′ ′∧ ∧ ¬ ∧ ∧ ↔ ∧ ↔ ∧ ∧ ¬ ∨

′ ′ ′ ′ ′∧ ¬ ∧ ∧ ∧ ¬ ∧ ↔ ∧ ↔ ∧ ¬ ∧ ∨

3 5 4 4 1 1 2 2                  ( ( ) ( ) [0] [1]).p p p p p p p p a a′ ′ ′ ′ ′∧ ¬ ∧ ∧ ¬ ∧ ↔ ∧ ↔ ∧ ∧

 

We now add a faulty transition: if t2 is fired, then there is a token in p3, no token in p2, and the number of 
tokens in other places does not change. We denote by Rf the new faulty transition relation. 

2 2 3 1 1 4 4 5 5( , , ) : ( , , ) ( ( ) ( ) ( ) [0] [1]).fR s a s R s a s p p p p p p p p p a a′ ′ ′ ′ ′ ′ ′= ∨ ∧ ¬ ∧ ∧ ↔ ∧ ↔ ∧ ↔ ∧ ∧ ¬  

Consider the property that if t2 is fired then there is a token in p1. The property can be represented as 
G(t2→Xp1). Using bounded model checking, we attempt to find a counterexample of the property, or, in other 
words, look for a witness for F(t2∧X¬p1). Let us consider a case where the bound k=2. Unrolling the transition 
relation results in the following formula: [M]2 :=I(s0)∧Rf (s0 ,a0 ,s1)∧Rf(s1 ,a1 ,s2). The loop condition is: 

2

2 2 20
: ( , ,fi

)iL R s a s
=

= ∨ . The transition for paths without loops is (p1(si) denotes p1∈L(si)): 

0 1
2 1 2 0 0 1 1 2 1

1 2
2 1 2 1 1 1 2 2 1

2
2 1 2

[ ( )] : [0] [1] ( ) [ ( )] ,

[ ( )] : [0] [1] ( ) [ ( )] ,

[ ( )] : 0.

F t X p a a p s F t X p

F t Xp a a p s F t X p

F t X p

∧ ¬ = ∧ ¬ ∧ ∨ ∧ ¬

∧ = ∧ ¬ ∧ ¬ ∨ ∧ ¬

∧ ¬ =

2

2  

The transition with loops can be done similarly. Putting everything together we get the following Boolean 
formula: 

2 1 2 0 0 0 1 1 1 2 0 0 1 1 1 1 1 2

2 2 0 2 2 1 0 2 2 1 2 2 1 0

[ , ( )] : ( ) ( , , ) ( , , ) (( [0] [1] ( )) [0] [1] ( ))

                                    ( ( , , ) [0] [1] ( )) ( ( , , ) [0] [1] (
f f

f f

M F t X p I s R s a s R s a s a a p s a a p s

R s a s a a p s R s a s a a p s

∧ ¬ = ∧ ∧ ∧ ∧ ¬ ∧ ¬ ∨ ∧ ¬ ∧ ¬ ∨

∧ ∧ ¬ ∧ ¬ ∨ ∧ ∧ ¬ ∧ ¬

2 2 2 2 2 2

))

                                    ( ( , , ) [0] [1]fR s a s a a p s

∨

∧ ∧ ¬ ∧ ¬ 1( ))).

 

The assignment s0: 10101, a0: 00, s1: 01001, a1: 01, s2: 00101 satisfies [M,F(t2∧X¬p1)]2. This assignment 
corresponds to a path from the initial state to the state 00101 that violates the property G(t2→Xp1). 

3.4   Experiments 

We have implemented the deadlock detection and SE-LTL model checking translations in a bounded model 
checker SE-BMC. As benchmarks we use the DP(x), ELEVATOR(x), RING(x) problems which are from Ref.[11]. 
The experimental results can be found in Table 1. The columns of the table are the following: Problem: The 
problem name with the size of the instance in parenthesis; |P|: Number of places in the original net; |T|: Number of 
transitions in the original net; SEs: Time needed for the SE-BMC engine to find a deadlock; BDDs: Time needed for 
the NuSMV/BDD engine to check the deadlock problem; States: Number of reachable states of the model. 

Overall, the results are promising, in particular. However, we need to get a better understanding of the 
behavior of the bounded model checking approach by doing more experiments. 

4   Compositional SAT-Based SE-LTL Verification 

We now discuss how to verify SE-LTL specification on parallel compositions of LKSs incrementally and 
compositionally. When trying to determine whether an SE-LTL specification holds on a given LKS, the following 
result is the key ingredient needed to exploit abstractions in the verification process. 
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Table 1  Deadlock checking experiments 
Problem |P| |T| SEs BDDs States 
DP(6) 36 24 6.7 102.3 728 
DP(8) 48 32 107.2 >2500 6554 

DP(10) 60 49 1674.1 >2500 48896 
DP(12) 72 48 >2500 >2500 >350000

ELEVATOR(1) 63 99 11.3 67.5 158 
ELEVATOR(2) 146 299 56.4 143.7 1062 
ELEVATOR(3) 327 783 675.2 >2500 7121 
ELEVATOR(4) 736 1939 >2500 >2500 43440 

RING(3) 39 33 4.5 23.1 87 
RING(5) 65 55 68.7 179.8 1290 
RING(7) 91 77 835.6 >2500 17000 

 
Theorem 6. Let M and A be LKSs with M⊆A. Then for any SE-LTL formula φ over M which mentions only 

propositions (and events) of A, if A|=φ then M|=φ. 
We can prove Theorem 6 by induction on the structure of φ directly. Here, we omit the proof details. Suppose 

now that we are given a collection M1,…,Mn of LKSs, as well as an SE-LTL specification φ, with the task of 
determining whether M1||…||Mn|=φ. We first create initial abstractions M1⊆A1,…,Mn⊆An. Then we check whether 
A1||…||An|=kE¬φ. In the affirmative, we are given with an abstract counterexample π such that π|=k¬φ. We must 
then determine whether this counterexample is real or spurious, i.e., whether it corresponds to a counterexample in 
M1||…||Mn or not. In the negative, we check whether k=CT. If so, then check whether A1||…||=k+1E¬φ. Otherwise 
return that M1||…||Mn|=φ. 

This counterexample validation check can be performed compositionally as follows. By Theorem 1, the 
counterexample is real iff for each i, the projection π↑Ai corresponds to (the prefix of) a valid behavior of Mi. To 
this end, we ‘simulate’ π↑Ai on Mi. If Mi accepts the path, we go on to the next component. Otherwise, we refine 
our abstraction Ai, yielding a new abstraction iA′  with i i iM A A′⊆ ⊆  and such that iA′  also rejects the projection 

iAπ ′↑  of the spurious counterexample π. 

Let us return to our SE-LTL specification φ, and let us fix throughout Pφ to be the set of all atomic state 
propositions appearing in φ. The initial abstraction 1/i iM ≈  is the coarsest possible: 1

is s′≈  iff L(Mi)(s)∩Pφ= 

L(Mi)(s′)∩Pφ. Suppose now that we are handed . We must determine whether π1( / )k
i ipath Mπ +∈ ≈i i is a real or 

spurious counterexample component, i.e., whether πi gives rise to a valid path of Mi or not. Moreover, in the latter 
case, we want to refine our partition  into  so that πk

i≈ 1k
i

+≈ i is rejected by 1/ k
i iM +≈ . The validation/refinement 

step is similar to that originally proposed by Chaki et al. in Ref.[1]. The full algorithm for checking whether 
M1||…||Mn|=φ is given in Algorithm 1. Note that the abstraction, counterexample-validation, and refinement steps 
are all performed one component at a time. 

Algorithm 1. SE-LTL model checking (M1,…,Mn;φ). 
for i:=1 to n: let Ai be the initial abstract of Mi; 
for k:=1 to CT of M1||…||Mn

{(1) decide whether [A1||…||An,¬φ]k is satisfiable 
if [A1||…||An,¬φ]k is satisfiable, then suppose 
π be path in A1||…||An violating φ 
looking for i such that π↑Ai is spurious 
if no such i then 

return M1||…||≠φ along with the counterexample derived from π 
else refine Ai, yielding a new abstraction iA′  with ii iM A A′⊆ ⊆  and iA′  also rejects iAπ ′↑ . 
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iLet iA A′= , goto (1) 

else if [A1||…||An,¬φ]k is unsatisfiable 
if k=CT then return M1||…||Mn|=φ 
else k:=k+1.} 

4.1   An example 

In this subsection we will evaluate our compositional SAT-based SE-LTL verification framework by an 
example shown in Fig.1. In Fig.1 M1,M2 are two LKSs. The property that we want to check is if event a2 occurs 
then the atomic proposition p2 in the successor of current state is true. The property expressed by SE-LTL is 
φ=G(a2→Xp2). 

We first define the equivalent relation ≈. Since p2 is the only atomic proposition in G(a2→Xp2), let Pφ={p2}. 
We define s≈s′ if and only if L(s)∩Pφ=L(s′)∩Pφ. Then we compute the abstractions of M1 and M2. In Fig.1 A1 
(Fig.1(b)), A2 (Fig.1(d)) are abstractions of M1 and M2 respectively. Then we compute the parallel composition of 
A1 and A2, i.e. A1||A2 (Fig.1(e)). After implementing Algorithm 1, we found A1||A2 has four states, CT=3, and 
A1||A2|=φ. By Theorem 6, M1||M2|=G(a2→Xp2). However, If we check G(a2→Xp2) by bounded model checking on 
M1||M2 directly, then the verified system has fourteen states and CT=9. Therefore, this example shows that our 
compositional verification framework can reduce verification time and memory space. 

 
 
 
 
 

(a) LKS M1                                  (b) a1: A abstraction of M1

 
 
 
 
 
 

(c) LKS M2                (d) A2: A abstraction of M2                  (e) A1||A2

p1,p3 p2,p3

p1,p2 p2

p3

p1,p2,p3

p1
a2 a2

a2

a2

a2

a1

a1

a1

a1 ∅ P2

a1

a2

a2a1

p2

∅ p2
a1

p2
a1

a2
a3 a3

a2a1

a1

q1 

a3

a2 
p2 ∅ 

a3

a2

p2

Fig.1  An example of compositional SAT-based SE-LTL verification 

5   Stuttering Equivalent in SE-LTL Model Checking 

In this section, we show that the stuttering equivalent is also efficient in SAT-based BMC. We will use 
stuttering equivalent to make SAT solvers used in BMC avoid searching for equivalent bounded paths. 

Definition 11 (bounded stuttering equivalent). Let π,π′ be two paths, m,n be two integers. We call π,π′ are 
(m,n) bounded stuttering equivalent if and only if one of the following two conditions holds. 

(1) For each 0≤l≤m, if (π(m),π(m,E),π(l))∈R then there exists an integer h with 0≤h≤n such that (π′(n),π′(n,E), 
π′(h))∈R and two paths (π(0),π(0,E),…,π(l−1),π(l−1,E),(π(l),π(l,E),…,π(m),π(m,E))ω), (π′(0),π′(0,E),…,π′(h−1), 
π′(h−1,E),(π′(h),π′(h,E),…,π′(n),π′(n,E))ω) are stuttering equivalent. For each 0≤h≤n, if (π′(n),π′(n,E),π′(h))∈R then 
there exists an integer l with 0≤l≤m such that (π(m),π(m,E),π(l))∈R and two paths π(0),π(0,E),…,π(l−1),π(l−1,E), 
(π(l),π(l,E),…,π(m),π(m,E))ω, π′(0),π′(0,E),…,π′(h−1),π′(h−1,E),(π′(h),π′(h,E),…,π′(n),π′(n,E))ω are stuttering 
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1i i+

k

equivalent. 
(2) π is not a m loop path, π′ is not a n loop path. And there are two finite sequences of integers 0=i0<i1< 

i2<…<il and 0=j0<j1<j2<…<jl such that for every 0≤x<l, 
L(π(ix))=L(π(ix+1))=…=L(π(ix+1−1))=L(π′(jx))=L(π′(jx+1))=…=L(π′(jx+1−1))π(ix,e)=π(ix+1,E)=… 

=π(ix+1−1,E)=π′(jx,E)=π′(jx+1,E)=…=π′(jx+1−1,E) 
L(π(il))=L(π(il+1))=…=L(π(m))=L(π′(jl))=L(π′(jl+1))=…=L(π′(n)) 

and π(il,E)=π(il+1,E)=…=π(m,E)=π′(jl,E)=π′(jl+1,E)=…=π′(n,E). 
Essentially bounded stuttering equivalent divides some bounded path into many finite sequences of identically 

labeled states and events. This optimization is based on the idea that if different execution sequences of 
asynchronous processes cannot be distinguished by the property we want to check, we only to consider one 
representative sequence. Using this approach, the state space can be greatly reduced because we no longer need to 
consider all possible execution sequences. The following theorem is very important for improving the efficiency of 
SAT-based bounded model checking of SE-LTL. It shows that any SE-LTL−X (resulting by removing X operator 
from SE-LTL) property is invariant under bounded stuttering equivalent. 

Theorem 7. If two paths π,π′ are (m,n) bounded stuttering equivalent then for any SE-LTL−X formula φ, π|=mφ 
if and only if π′|=nφ. 

Now we redefine the unfolding of the transition relation such that bounded stuttering equivalent can be 
integrated in our BMC procedure. 

Definition 12. Given an LKS M, and a bound k with k≥0, we define 
1

0 1 10
[ ] : ( ) ( ( , , ) ( ))

k
Mod
k i i i i ii

M I s R s a s s s a a
−

+ +=
= ∧ ∧ ∧ ≠ ∨ ≠ . 

Informally in our new encoding, we require that two consecutive states and events can not be same. The 
following theorem guarantees the correctness of our new encoding. 

Theorem 8. For some integer k with k≥0, and an SE-LTL−X property φ, if [ ] [ ]Mod
kM φ∧  is satisfiable then 

M|=Eφ. 
Since [ ] [ ]Mod

k kM M→ , the proof of Theorem 8 is easy. In the original bounded model checking equivalent 

bounded paths may be searched repeatedly. Therefore some searches are redundant. With respect to SE-LTL−X 
properties in our new encoding bounded model checking can avoid searching redundant bounded paths. However, 

[ ]Mod
kM  is larger than [M]k. Therefore sometimes the new encoding may be inefficient. 

Given an SE-LTL formula, we use the notation Σ(φ) to represent the set of events appearing in φ. Without loss 
of generality we assume that the transition relation R for an asynchronous system is expressed as a disjunction of 
transitions R1,…,Rn, and for each 1≤i≤n, Ri has only one true assignment. For the specification φ, for each 1≤i≤n, 
we look for the transition Ri which represents a transition of a state to its self and the event making Ri does not 
belong to Σ(φ). Without loss of generality assume that {Rj+1,…,Rn} are these transitions. Then let R′:=R1∨…∨Rj. 

Definition 13. Given an LKS M, and a bound k with k≥0, we define 1
1

0 10
[ ] : ( ) ( , , )

k
Mod
k ii i iM I s R s a s

−

+=
′= ∧ ∧ . 

Theorem 9. For some integer k with k≥0, and an SE-LTL−X property φ, if 1[ ] [ ]Mod
kM kφ∧  is satisfiable then 

M|=Eφ. 
Since 1[ ]Mod

kM  is smaller than [M]k and can avoid searching for bounded stuttering equivalent paths, the new 

encoding is efficient. We use the Petri nets in Fig.2 as our benchmarks to compare the BMC procedure and the 
BMC procedure integrating stuttering equivalence. Table 2 is the experiment which shows that introducing 
stuttering equivalence in our BMC procedure can reduce verification time very much. 
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Fig.2  Two simple Petri nets 

6   Conclusion and Future Work 

In this paper, we presented an SAT-based Bounded Model Checking procedure for the state/event linear time 
temporal logic SE-LTL. We also presented a new method integrating our BMC procedure and stuttering equivalent. 

Table 2  Comparing the BMC procedure and the BMC procedure integrating stuttering equivalent 
Example Property Stuttering equivalent Bound Error Time (s) 

PN1 G¬p20 No 19 Yes 15.594 
PN1 G¬p20 Yes 19 Yes 3.141 
PN1 G¬(¬p20Up14) No 13 Yes 5.813 
PN1 G¬(¬p20Up14) Yes 13 Yes 2.156 
PN1 G(p15→FGp16) No 15 Yes 8.812 
PN1 G(p15→FGp16) Yes 15 Yes 2.953 
PN2 G¬p15 No 5 Yes 27.136 
PN2 G¬p15 Yes 5 Yes 19.243 
PN2 G¬(¬p5Up4) No 3 Yes 16.854 
PN2 G¬(¬p5Up4) Yes 3 Yes 11.346 
PN2 G¬(¬p12Up11) No 3 Yes 15.278 
PN2 G¬(¬p12Up11) Yes 3 Yes 10.972 

The integration reduces the run time of SAT solvers. Our method is also fit for SAT-based BMC of LTL. We 
further provided a new verification strategy for concurrent software system which integrates SAT-based BMC, 
counterexample-guided abstraction refinement and compositional reasoning. We are developing the tool for 
implementing the new strategy. For future work we would like to discuss other equivalent relations. 
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