
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.20, No.6, June 2009, pp.1414−1424 http://www.jos.org.cn
doi: 10.3724/SP.J.1001.2009.00558 Tel/Fax: +86-10-62562563
© by Institute of Software, the Chinese Academy of Sciences. All rights reserved.

一种基于满足性判定的并发软件验证策略
∗

周从华

(江苏大学 计算机科学与通信工程学院,江苏 镇江 212013)

SAT-Based Compositional Verification Strategy for Concurrent Software with States, Events

ZHOU Cong-Hua

(School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, China)

+ Corresponding author: E-mail: chzhou@ujs.edu.cn

Zhou CH. SAT-Based compositional verification strategy for concurrent software with states, events. Journal
of Software, 2009,20(6):1414−1424. http://www.jos.org.cn/1000-9825/558.htm

Abstract: For the state/event linear temporal logic SE-LTL, an SAT-based Bounded Model Checking procedure
which avoids the space blow up of BDDs is presented. For SE-LTL−X, it is shown how to integrate the procedure and
the stuttering equivalent technique. The integration speeds up the verification procedure. Furthermore, a framework
for model checking concurrent software systems which integrates three powerful verification techniques is
presented: SAT-based Bounded Model Checking, counterexample-guided abstraction refinement and compositional
reasoning. In the framework the abstraction and refinement steps are performed over each component separately,
and the model checking step is symbolic. Example shows that the framework can reduce verification time and
space.
Key words: bounded model checking; abstract; parallel composition

摘 要: 对线性时态逻辑SE-LTL提出了一种基于SAT的有界模型检测过程,该过程避免了基于BDD方法中状态空

间快速增长的问题.在SE-LTL的子集SE-LTL−X的有界模型检测过程中,集成了stuttering等价技术,该集成有效地加速

了验证过程.进一步提出了一种组合了基于SAT的有界模型检测、基于反例的抽象求精、组合推理 3 种状态空间约

简技术的并发软件验证策略.该策略中,抽象和求精在每一个构件上独立进行.同时,模型检测的过程是符号化的.实
例表明,该策略降低了验证时间和对内存空间的需求.
关键词: 有界模型检测;抽象;平行组合
中图法分类号: TP301 文献标识码: A

1 Introduction

In order to represent both software implementations and specifications directly without any program

∗ Supported by the National Natural Science Foundation of China under Grant No.60773049 (国家自然科学基金); the Advanced Talent

Foundation of Jiangsu University of China under Grant No.07JDG014 (江苏大学高级人才科研启动基金); the Fundamental Research

Project of the Natural Science in Colleges of Jiangsu Province of China under Grant No.08KJD520015 (江苏省高校自然科学基金)
Received 2007-05-30; Accepted 2008-03-06

周从华:一种基于满足性判定的并发软件验证策略 1415

annotations or privileged insights into program execution, Chaki et al. proposed a specification language SE-LTL[1]
which is a state/event derivative of LTL[1]. The state space explosion[2] is the main problem in checking a system
satisfying an SE-LTL formula. SAT-based Bounded Model Checking (BMC)[2,3] has recently been introduced as an
effective technique to overcome the state space explosion. Therefore it is necessary to develop a BMC procedure for
SE-LTL. To the best of our knowledge, at present a BMC procedure does not exist.

For SE-LTL, we first provide its SAT-based BMC procedure. Given an LKS M, an SE-LTL formula φ and a
natural number k, our BMC procedure decides whether there exists a computation in M of length k or less that
violates φ, i.e. M|=kE¬φ. Our BMC is performed by generating a proposition formula, which is satisfiable if and
only if such a computation exists. For SE-LTL−X properties we further show how to integrate our BMC procedure
and stuttering equivalent technique[4]. Experiments show that the integration can reduce verification time
significantly.

Then we present an efficient verification strategy which combines SAT-based BMC, counterexample-guided
abstraction refinement[5−7] and compositional reasoning[8]: starting with a coarse initial abstraction, our scheme
computes increasingly precise abstractions of the target system by analyzing spurious counterexamples until either a
real counterexample is obtained or the system is found to be correct. Of the three steps in this abstract-verify-refine
process only the verification stage of our technique requires the explicit composition of a system. The other two
stages can be performed one component at a time. To the best of our knowledge, our strategy is the first SAT-based,
counterexample-guided, compositional abstraction refinement scheme to perform verification of linear time
temporal specifications.

2 Preliminaries

2.1 Labeled kripke structure

Definition 1. A labeled Kripke structure M is a 6-tuple (S,s0,AP,Σ,L,R) where S is a finite non-empty set of
states, s0∈S is an initial state, AP is a finite set of atomic state propositions, Σ is a finite set of events, L:S→2AP is a
state-labeling function, R⊆S×Σ×S is a transition relation that must be total, that is, for every state s∈S there is an
event a∈Σ and a state s′∈S such that R(s,a,s′) holds.

Given an LKS M=(S,s0,AP,Σ,L,R) we write S(M), s0(M), AP(M), L(M), Σ(M) and R(M) to mean S, s0, AP, L, Σ
and R respectively. A path π=s0,a0,s1,a1,… of M is an alternating infinite sequence of states and events subject to
the following: for each i≥0, si∈S, ai∈Σ and R(si,ai,si+1) holds. For the path π=s0,a0,s1,a1,…, we use π(i) to denote
the i-th state si, use π(i,E) to denote the i-th event ai. We write Path(M) to denote the set of infinite and finite paths
whose first state is s0(M).

Definition 2. A path π is a (k,l)-loop with l<k, if (π(k),π(k,E),π(l))∈R and π=u⋅vω, where u=π(0),π(0,E),…,
π(l−1),π(l−1,E) and v=π(l),π(l,E),…,π(k),π(k,E). We call π simply a k-loop if there is an integer l with 0≤l≤k such
that π is a (k,l)-loop.

2.2 Abstraction

Let M=(S,s0,AP,Σ,L,R) and 0(, , , , ,)A A A A A AA S s AP L RΣ= be two LKSs. We say that A is an abstraction of M,
written M⊆A iff: 1) APA⊆AP; 2) ΣA=Σ; 3) For every path π=s0,a0,s1,a1,… of M there exists a path

0 0 1 1, , , ,...s a s aπ ′ ′ ′ ′ ′= of A such that for each i≥0, i and ia a′ = A() ()A
i iL s L s AP′ = ∩ . The abstraction of M defined as

above over-approximates the behaviors of M, that is a behavior of M is also a behavior of A.

2.3 Existential quotients of labeled kripke structures

We use the method introduced by Chaki et al. in Ref.[1] to construct abstractions. An abstraction of an LKS M

1416 Journal of Software 软件学报 Vol.20, No.6, June 2009

is obtained by quotienting the states of M by a suitable equivalence relation. More precisely, for M=(S,s0,AP,Σ,L,R),
Let APA⊆AP be a subset of atomic state propositions of M, and let ≈ be an equivalence relation on the states S of M
that respects APA. The existential quotient of M (with respect to APA and ≈) is the LKS 0(, , , , ,A A A A AA S s AP LΣ=

)AR such that: 1) SA=S/≈, the collection of equivalence classes of S; 2) 0 0[]As s= ; 3) for all s∈S, LA([s])=L(s)∩
APA ; 4) ΣA=Σ; 5) for all s,s′∈S and a∈Σ, ([s1],a,[s2])∈RA iff there exists 1 1[]s s′ ∈ , 2 2[]s s′ ∈ such that

1 2(, ,)s a s R′ ′ ∈ .

We write M/≈ (when the set APA is clearly understood from the context) to denote the abstraction A of M obtained
in the above manner.

2.4 Parallel composition

The notion of parallel composition we consider in this paper is adapted from Ref.[1] which allows for
communication through shared events only; in particular we forbid the sharing of variables. This restriction
facilitates the use of compositional reasoning in verifying specification.

Let 1
1 1 0 1 1 1 1(, , , , ,)M S s AP L RΣ= and 2

2 2 0 2 2 2 2(, , , , ,)M S s AP L RΣ= be two LKSs. M1 and M2 are said to be
compatible, i.e., that they do not share variables: . The parallel composition of M1 2 1 2S S AP AP∩ = ∩ = ∅ 1 and M2

is given by 1 1
1 2 1 2 0 0 1 2 1 2 1 2|| (, , , , ,)M M S S s s AP AP L L RΣ Σ= × × ∪ ∪ ∪ , where 1 2 1 2 1 1 2 2()(,) () ()L L s s L s L s∪ = ∪ and

1 2 1 2((,), , (,))R s s a s s′ ′ holds iff one of the following holds: 1) a∈Σ1\Σ2 and 1 1 1(, ,)R s a s′ holds and 2 2s s′ = ; 2)
a∈Σ2\Σ1 and 2 2 2(, ,)R s a s′ holds and 1 1s s′ = ; 3) a∈Σ1\Σ2, 1 1 1(, ,)R s a s′ holds and 2 2 2(, ,)R s a s′ holds.

Let M1 and M2 be as above, and let be an alternating infinite sequence of states and events of

M

1 2
0 0 0(,), ,...s s aπ =

1||M2. The projection π↑Mi of π on Mi consists of (possibly finite) the subsequence of obtained by

simply removing all pairs
0 0, ,...is a

1(,)i
j ja s + for which aj∉Σi. In other words, we keep from π only those states that belong

to Mi, and excise any transition labeled with an event not in Σi. We now introduce the following theorems, which is
useful for our composition verification strategy.

Theorem 1[1]. Let M1,…,Mn be compatible LKSs, and let π be an infinite alternating sequence of states and
events of the composition M1||…||Mn. Then π is a path of M1||…||Mn iff, for each i, there exists a path iπ ′ of Mi
such that π↑Mi is a prefix of iπ ′ . In other words, whether a path belongs to the composition of LKSs can be

checked by projecting and examining the path on each individual component separately.
Theorem 2[1]. Let M1,…,Mn be compatible LKSs, and let A1,…,An be respective abstractions of the Mi: for

each i, Mi⊆Ai. Then M1,…,Mn⊆A1,…,An. In other words, parallel composition preserves the abstraction relation.

2.5 State/Event linear temporal logic SE-LTL

Given an LKS M=(S,s0,AP,Σ,L,R), we consider linear temporal logic state/event formulas SE-LTL over the sets
AP, Σ: :: | | | | | | |p a X G F Uφ φ φ φ φ φ φ φ φ φ= ∧ ∨ . About the semantics of SE-LTL, readers can refer to Ref.[1].
We introduce the notation M|=f which represents that for all path π of M, π|=f, and the notation. M|=Ef which
represents there is a path π of M such that π|=f.

3 SAT-Based Bounded Model Checking for SE-LTL

Bounded model checking based on SAT methods has been introduced as a complementary technique to
BDD-based symbolic model checking. The main idea of bounded model checking is to search for an execution of
the system of some length k, which constitutes a counterexample for a verified property.

3.1 Bounded semantics for SE-LTL

In bounded model checking a crucial observation is that the prefix of a path is finite, it still might represent an

周从华:一种基于满足性判定的并发软件验证策略 1417

infinite path if there is a back loop from the last state of the prefix to any of the previous states. If there is no such
back loop, then the prefix does not say anything about the infinite behavior of the path. Thus when we define
bounded semantics for SE-LTL, we must consider whether a finite path represents an infinite behavior.

Definition 3 (bounded semantics for a loop). Let π be a k-loop. Then an SE-LTL formula f is valid along the
path π with bound k (written as π|=kf) iff π|=f.

Definition 4 (bounded semantics without a loop). Let π be a path that is not k-loop. Then an SE-LTL formula
f is valid along π with bound k (written as π|=kf) iff 0| k fπ = where i≤k and

− iff iff | i
k pπ = (()); | i

kp L i pπ π∈ = ¬ (())p L iπ∉ ; iff | i
k aπ = (,)a i Eπ≡ ;

− | i
k f gπ = ∧ iff | i

k fπ = and | i
k gπ = ; | i

k f gπ = ∨ iff | i
k fπ = or | i

k gπ = ;

− is always false; iff | i
k Gfπ = | i

k Ffπ = , ,j i j k∃ ≤ ≤ | j
k fπ = ; | i

k Xfπ = iff i≤k and 1| i
k fπ += ;

− | i
k fUgπ = iff , [| j

kj i j k gπ∃ ≤ ≤ = and . , , |]n
kn i n k fπ∀ ≤ < =

We use the notation M|=kEf to represent that there exists a path π of M such that π|=kf.
Theorem 3. Let AP be a set of propositions, M be an LKS over AP, π be a path of M, f be an SE-LTL formula,

and k be a bound. Then π|=kf implies π|=f.
Definition 5[9]. For every LKS M and an SE-LTL property f, the natural number k called a CT of f if and only

if the following condition holds: if there is no counterexample to f in M of length k or less, then M|=f.
Theorem 4. Let AP be a set of propositions, M be an LKS over AP, π be a path of M, f be an SE-LTL formula,

and k be a natural number. Then M|=Ef implies there exists a bound k≤|M|×2|f| such that M|=kEf. In other words,
|M|×2|f| is a CT of f.

Proof: In Ref.[1] it has shown that every SE-LTL formula f can be translated into a Büchi automaton B(f)
such that B(f) accepts exactly the words (paths) that satisfy f. Therefore existential SE-LTL model-checking can be
done as follows: Given an SE-LTL formula f, construct B(f), a Büchi automaton that accepts exactly those paths that
satisfy f. Then, check whether M×B(f) is non-empty. It is straightforward to see that M|=Ef if and only if M×B(f) is
nonempty. Thus, SE-LTL model checking is reduced to the question of Büchi automaton non-emptiness, i.e.,
proving that there is a word accepted by the product automaton M×B(f). In order to prove non-emptiness, one has to
show that there is a computation of M×B(f) passing through an accepting state an infinite number of times. That is
there exists a path in M×B(f) that starts with the initial state and ends with a cycle in the strongly connected
component including an accepting state. This path can be chosen to be a k-loop with k bounded by |M|×2|f| which is
the size of M×B(f). If we project this path onto its first component, the original LKS, then we get a path π that is a
k-loop and in addition fulfills π|=f. By the definition of the bounded semantics this also implies π|=kf.

3.2 Translation

Given an LKS M, an SE-LTL formula f and a bound k, we will construct a proposition formula [M,f]k. Let
s0,a0,…sk,ak be a finite sequences of states and events on a path π. Each si represents a state at time step i and
consists of an assignment of truth values to the set of state variables. Each ai represents an event at time step i and
consists of an assignment of truth values to the set of event variables. The formula [M,f]k encodes constraints on
s0,a0,…sk,ak such that [M,f]k is satisfiable iff π is a witness for f. The definition of formula [M,f]k will be presented
as three separate components. We first define a proposition formula [M]k that constraints s0,a0,…sk,ak to be a valid
path starting from the initial state. We then define the loop condition, which is a proposition formula that is
evaluated to true only if the path π contains a loop. Finally, we define a proposition formula that constrains π to
satisfy f.

1418 Journal of Software 软件学报 Vol.20, No.6, June 2009

i iDefinition 6 (unfolding the transition relation). For the bound k, we define
1

0 10
[] : () (, ,)

k

k ii
M I s R s a s

−

+=
= ∧ ,

where I(s0) is true if and only if s0 is the initial state.
The translation of an SE-LTL formula depends on the shape of the path π. We define the proposition formula

lLk to be true if and only if there is a transition from sate sk to state sl.
Definition 7 (loop condition). For two integers k,l with k≥l≥0, let lLk:=R(sk,ak,sl).
Depending on whether a path is a k-loop, we have two different translations of an SE-LTL formula f. First we

consider the case where the path is a k-loop. We give a recursive translation of an SE-LTL formula f for a k-loop

path π. The translation of f recurses over its subterms and the states in π. The intermediate formula depends [] i
l k⋅

on three parameters: l,k and i. We use l for the start position of the loop, k for the bound, and i for the current
position in π.

Definition 8 (translation of an SE-LTL formula on a (k,l)-loop).

− ; ; [] : ()i
l k ia a a= ≡ [] : (); [] : [] []i i i i

l k i l k l k l kp p L s f g f g= ∈ ∧ = ∧ [] : [] []i i i
l k l k l kf g f g∨ = ∨

i

− ; [] : ()i
l kp p L s¬ = ∉ [] :i

l kXf = if i<k then else 1[] i
kf + []l

kf

− ;
min(,)

[] : []
k

i i
l k l kj i l

Ff f
=

= ∨
min(,)

[] : []
k

i i
l k l kj i l

Gf f
=

= ∧

h
k−

11 1
[] : ([] []) ([] [] [])

jk i i k
i i h i h

l k l k k l k l k lj i h i j i h i h i
fUg g f g f f

−− −

= = = = =
= ∨ ∧ ∧ ∨ ∨ ∧ ∧ ∧ ∧

For the case where π is not a k-loop, the translation can be treated as a special case of the k-loop translation.
For LKS with total transition relations, every finite path π can be extended to an infinite one. Since the property of
the path beyond event ak is unknown, we make a conservative approximation and assume all properties beyond ak
are false.

Definition 9 (translation of an SE-LTL formula without a loop).

− [] ; ; ; : ()i
k ia a a= ≡ [] : (); [] : [] []i i i i

kk i k kp p L s f g f g= ∈ ∧ = ∧ [] : ()i
k ip p L s¬ = ∉ i

k[] : [] []i i
k kf g f g∨ = ∨

− [] if i<k then :i
kXf = 1[] i

kf + else false; [false;] : [] ;[] :
k

i i
k kj i

Ff f Gf
=

= ∨ =i
k)h

k

1
[] : ([] []

jk
i i
k kj i h i

fUg g f
−

= =
= ∨ ∧ ∧

Combining all components, the encoding of a bounded model checking problem in proposition logic is defined
as follows.

Definition 10 (general translation). Let M be an LKS, f be an SE-LTL formula, and k be a bound. We define

0

0
[] : ([] ([]))

k

k k l k ll
f f L f

=
= ∨ ∨ ∧ 0

k and [M,f]k:=[M]k∧[f]k.

The translation scheme guarantees the following theorem, which we state without proof.
Theorem 5. Let M be an LKS, f be an SE-LTL formula, and k be a bound. Then [M,f]k is satisfiable if and only

if M|=kEf.
Thus, the reduction of bounded model checking to SAT is sound and complete with respect to the bounded

semantics. The following Corollary 1 is straightforward from Theorem 4 and Theorem 5.
Corollary 1. Let M be an LKS, f be an SE-LTL formula, and k be a bound. M|=Ef if and only if there exists an

integer k≤|M|×2|f| such that [M,f]k is satisfiable.

3.3 An example

Let us consider the mutual exclusion example modeled by a Petri net[10] PN=(P,T,s0,F), where P={p1,…,p5} is
a set of places, T={t1,t2,t3,t4} are a set of transitions, s0(p1)=s0(p3)=s0(p5)=1 and s0(p2)=s0(p4)=0 is the initial state,
F={(p1,t1),(p3,t1),(t1,p2),(p2,t2),(t2,p1),(t2,p3),(p3,t3),(p5,t3),(t3,p4),(p4,t4),(t4,p3),(t4,p5)} is a set of arcs. Each state s of
the system PN is represented by five bit variables: p1,p2,p3,p4,p5. We use two bit variables to encode events: 00↔t1,

周从华:一种基于满足性判定的并发软件验证策略 1419

01↔t2, 10↔t3, 11↔t4. We use a[1] for the high bit and a[0] for the low bit.
The initial state is represented as follows: I(s):=p1∧(¬p2)∧p3∧(¬p4)∧p5.
The transition relation is represented as follows,

1 1 2 3 3 4 4 5 5

1 2 2 3 4 4 5 5

3 3 4 5 5 1 1 2 2

(, ,) : (() () [0] [1])
 (() () [0] [1])
 (() () [0] [1])

R s a s p p p p p p p p p a a
p p p p p p p p a a
p p p p p p p p p a a

′ ′ ′ ′ ′ ′= ∧ ¬ ∧ ∧ ∧ ¬ ∧ ↔ ∧ ↔ ∧ ¬ ∧ ¬ ∨
′ ′ ′ ′ ′∧ ∧ ¬ ∧ ∧ ↔ ∧ ↔ ∧ ∧ ¬ ∨

′ ′ ′ ′ ′∧ ¬ ∧ ∧ ∧ ¬ ∧ ↔ ∧ ↔ ∧ ¬ ∧ ∨

3 5 4 4 1 1 2 2 (() () [0] [1]).p p p p p p p p a a′ ′ ′ ′ ′∧ ¬ ∧ ∧ ¬ ∧ ↔ ∧ ↔ ∧ ∧

We now add a faulty transition: if t2 is fired, then there is a token in p3, no token in p2, and the number of
tokens in other places does not change. We denote by Rf the new faulty transition relation.

2 2 3 1 1 4 4 5 5(, ,) : (, ,) (() () () [0] [1]).fR s a s R s a s p p p p p p p p p a a′ ′ ′ ′ ′ ′ ′= ∨ ∧ ¬ ∧ ∧ ↔ ∧ ↔ ∧ ↔ ∧ ∧ ¬

Consider the property that if t2 is fired then there is a token in p1. The property can be represented as
G(t2→Xp1). Using bounded model checking, we attempt to find a counterexample of the property, or, in other
words, look for a witness for F(t2∧X¬p1). Let us consider a case where the bound k=2. Unrolling the transition
relation results in the following formula: [M]2 :=I(s0)∧Rf (s0 ,a0 ,s1)∧Rf(s1 ,a1 ,s2). The loop condition is:

2

2 2 20
: (, ,fi

)iL R s a s
=

= ∨ . The transition for paths without loops is (p1(si) denotes p1∈L(si)):

0 1
2 1 2 0 0 1 1 2 1

1 2
2 1 2 1 1 1 2 2 1

2
2 1 2

[()] : [0] [1] () [()] ,

[()] : [0] [1] () [()] ,

[()] : 0.

F t X p a a p s F t X p

F t Xp a a p s F t X p

F t X p

∧ ¬ = ∧ ¬ ∧ ∨ ∧ ¬

∧ = ∧ ¬ ∧ ¬ ∨ ∧ ¬

∧ ¬ =

2

2

The transition with loops can be done similarly. Putting everything together we get the following Boolean
formula:

2 1 2 0 0 0 1 1 1 2 0 0 1 1 1 1 1 2

2 2 0 2 2 1 0 2 2 1 2 2 1 0

[, ()] : () (, ,) (, ,) (([0] [1] ()) [0] [1] ())

 ((, ,) [0] [1] ()) ((, ,) [0] [1] (
f f

f f

M F t X p I s R s a s R s a s a a p s a a p s

R s a s a a p s R s a s a a p s

∧ ¬ = ∧ ∧ ∧ ∧ ¬ ∧ ¬ ∨ ∧ ¬ ∧ ¬ ∨

∧ ∧ ¬ ∧ ¬ ∨ ∧ ∧ ¬ ∧ ¬

2 2 2 2 2 2

))

 ((, ,) [0] [1]fR s a s a a p s

∨

∧ ∧ ¬ ∧ ¬ 1())).

The assignment s0: 10101, a0: 00, s1: 01001, a1: 01, s2: 00101 satisfies [M,F(t2∧X¬p1)]2. This assignment
corresponds to a path from the initial state to the state 00101 that violates the property G(t2→Xp1).

3.4 Experiments

We have implemented the deadlock detection and SE-LTL model checking translations in a bounded model
checker SE-BMC. As benchmarks we use the DP(x), ELEVATOR(x), RING(x) problems which are from Ref.[11].
The experimental results can be found in Table 1. The columns of the table are the following: Problem: The
problem name with the size of the instance in parenthesis; |P|: Number of places in the original net; |T|: Number of
transitions in the original net; SEs: Time needed for the SE-BMC engine to find a deadlock; BDDs: Time needed for
the NuSMV/BDD engine to check the deadlock problem; States: Number of reachable states of the model.

Overall, the results are promising, in particular. However, we need to get a better understanding of the
behavior of the bounded model checking approach by doing more experiments.

4 Compositional SAT-Based SE-LTL Verification

We now discuss how to verify SE-LTL specification on parallel compositions of LKSs incrementally and
compositionally. When trying to determine whether an SE-LTL specification holds on a given LKS, the following
result is the key ingredient needed to exploit abstractions in the verification process.

1420 Journal of Software 软件学报 Vol.20, No.6, June 2009

Table 1 Deadlock checking experiments
Problem |P| |T| SEs BDDs States
DP(6) 36 24 6.7 102.3 728
DP(8) 48 32 107.2 >2500 6554

DP(10) 60 49 1674.1 >2500 48896
DP(12) 72 48 >2500 >2500 >350000

ELEVATOR(1) 63 99 11.3 67.5 158
ELEVATOR(2) 146 299 56.4 143.7 1062
ELEVATOR(3) 327 783 675.2 >2500 7121
ELEVATOR(4) 736 1939 >2500 >2500 43440

RING(3) 39 33 4.5 23.1 87
RING(5) 65 55 68.7 179.8 1290
RING(7) 91 77 835.6 >2500 17000

Theorem 6. Let M and A be LKSs with M⊆A. Then for any SE-LTL formula φ over M which mentions only

propositions (and events) of A, if A|=φ then M|=φ.
We can prove Theorem 6 by induction on the structure of φ directly. Here, we omit the proof details. Suppose

now that we are given a collection M1,…,Mn of LKSs, as well as an SE-LTL specification φ, with the task of
determining whether M1||…||Mn|=φ. We first create initial abstractions M1⊆A1,…,Mn⊆An. Then we check whether
A1||…||An|=kE¬φ. In the affirmative, we are given with an abstract counterexample π such that π|=k¬φ. We must
then determine whether this counterexample is real or spurious, i.e., whether it corresponds to a counterexample in
M1||…||Mn or not. In the negative, we check whether k=CT. If so, then check whether A1||…||=k+1E¬φ. Otherwise
return that M1||…||Mn|=φ.

This counterexample validation check can be performed compositionally as follows. By Theorem 1, the
counterexample is real iff for each i, the projection π↑Ai corresponds to (the prefix of) a valid behavior of Mi. To
this end, we ‘simulate’ π↑Ai on Mi. If Mi accepts the path, we go on to the next component. Otherwise, we refine
our abstraction Ai, yielding a new abstraction iA′ with i i iM A A′⊆ ⊆ and such that iA′ also rejects the projection

iAπ ′↑ of the spurious counterexample π.

Let us return to our SE-LTL specification φ, and let us fix throughout Pφ to be the set of all atomic state
propositions appearing in φ. The initial abstraction 1/i iM ≈ is the coarsest possible: 1

is s′≈ iff L(Mi)(s)∩Pφ=

L(Mi)(s′)∩Pφ. Suppose now that we are handed . We must determine whether π1(/)k
i ipath Mπ +∈ ≈i i is a real or

spurious counterexample component, i.e., whether πi gives rise to a valid path of Mi or not. Moreover, in the latter
case, we want to refine our partition into so that πk

i≈ 1k
i

+≈ i is rejected by 1/ k
i iM +≈ . The validation/refinement

step is similar to that originally proposed by Chaki et al. in Ref.[1]. The full algorithm for checking whether
M1||…||Mn|=φ is given in Algorithm 1. Note that the abstraction, counterexample-validation, and refinement steps
are all performed one component at a time.

Algorithm 1. SE-LTL model checking (M1,…,Mn;φ).
for i:=1 to n: let Ai be the initial abstract of Mi;
for k:=1 to CT of M1||…||Mn

{(1) decide whether [A1||…||An,¬φ]k is satisfiable
if [A1||…||An,¬φ]k is satisfiable, then suppose
π be path in A1||…||An violating φ
looking for i such that π↑Ai is spurious
if no such i then

return M1||…||≠φ along with the counterexample derived from π
else refine Ai, yielding a new abstraction iA′ with ii iM A A′⊆ ⊆ and iA′ also rejects iAπ ′↑ .

周从华:一种基于满足性判定的并发软件验证策略 1421

iLet iA A′= , goto (1)

else if [A1||…||An,¬φ]k is unsatisfiable
if k=CT then return M1||…||Mn|=φ
else k:=k+1.}

4.1 An example

In this subsection we will evaluate our compositional SAT-based SE-LTL verification framework by an
example shown in Fig.1. In Fig.1 M1,M2 are two LKSs. The property that we want to check is if event a2 occurs
then the atomic proposition p2 in the successor of current state is true. The property expressed by SE-LTL is
φ=G(a2→Xp2).

We first define the equivalent relation ≈. Since p2 is the only atomic proposition in G(a2→Xp2), let Pφ={p2}.
We define s≈s′ if and only if L(s)∩Pφ=L(s′)∩Pφ. Then we compute the abstractions of M1 and M2. In Fig.1 A1
(Fig.1(b)), A2 (Fig.1(d)) are abstractions of M1 and M2 respectively. Then we compute the parallel composition of
A1 and A2, i.e. A1||A2 (Fig.1(e)). After implementing Algorithm 1, we found A1||A2 has four states, CT=3, and
A1||A2|=φ. By Theorem 6, M1||M2|=G(a2→Xp2). However, If we check G(a2→Xp2) by bounded model checking on
M1||M2 directly, then the verified system has fourteen states and CT=9. Therefore, this example shows that our
compositional verification framework can reduce verification time and memory space.

(a) LKS M1 (b) a1: A abstraction of M1

(c) LKS M2 (d) A2: A abstraction of M2 (e) A1||A2

p1,p3 p2,p3

p1,p2 p2

p3

p1,p2,p3

p1
a2 a2

a2

a2

a2

a1

a1

a1

a1 ∅ P2

a1

a2

a2a1

p2

∅ p2
a1

p2
a1

a2
a3 a3

a2a1

a1

q1

a3

a2
p2 ∅

a3

a2

p2

Fig.1 An example of compositional SAT-based SE-LTL verification

5 Stuttering Equivalent in SE-LTL Model Checking

In this section, we show that the stuttering equivalent is also efficient in SAT-based BMC. We will use
stuttering equivalent to make SAT solvers used in BMC avoid searching for equivalent bounded paths.

Definition 11 (bounded stuttering equivalent). Let π,π′ be two paths, m,n be two integers. We call π,π′ are
(m,n) bounded stuttering equivalent if and only if one of the following two conditions holds.

(1) For each 0≤l≤m, if (π(m),π(m,E),π(l))∈R then there exists an integer h with 0≤h≤n such that (π′(n),π′(n,E),
π′(h))∈R and two paths (π(0),π(0,E),…,π(l−1),π(l−1,E),(π(l),π(l,E),…,π(m),π(m,E))ω), (π′(0),π′(0,E),…,π′(h−1),
π′(h−1,E),(π′(h),π′(h,E),…,π′(n),π′(n,E))ω) are stuttering equivalent. For each 0≤h≤n, if (π′(n),π′(n,E),π′(h))∈R then
there exists an integer l with 0≤l≤m such that (π(m),π(m,E),π(l))∈R and two paths π(0),π(0,E),…,π(l−1),π(l−1,E),
(π(l),π(l,E),…,π(m),π(m,E))ω, π′(0),π′(0,E),…,π′(h−1),π′(h−1,E),(π′(h),π′(h,E),…,π′(n),π′(n,E))ω are stuttering

1422 Journal of Software 软件学报 Vol.20, No.6, June 2009

1i i+

k

equivalent.
(2) π is not a m loop path, π′ is not a n loop path. And there are two finite sequences of integers 0=i0<i1<

i2<…<il and 0=j0<j1<j2<…<jl such that for every 0≤x<l,
L(π(ix))=L(π(ix+1))=…=L(π(ix+1−1))=L(π′(jx))=L(π′(jx+1))=…=L(π′(jx+1−1))π(ix,e)=π(ix+1,E)=…

=π(ix+1−1,E)=π′(jx,E)=π′(jx+1,E)=…=π′(jx+1−1,E)
L(π(il))=L(π(il+1))=…=L(π(m))=L(π′(jl))=L(π′(jl+1))=…=L(π′(n))

and π(il,E)=π(il+1,E)=…=π(m,E)=π′(jl,E)=π′(jl+1,E)=…=π′(n,E).
Essentially bounded stuttering equivalent divides some bounded path into many finite sequences of identically

labeled states and events. This optimization is based on the idea that if different execution sequences of
asynchronous processes cannot be distinguished by the property we want to check, we only to consider one
representative sequence. Using this approach, the state space can be greatly reduced because we no longer need to
consider all possible execution sequences. The following theorem is very important for improving the efficiency of
SAT-based bounded model checking of SE-LTL. It shows that any SE-LTL−X (resulting by removing X operator
from SE-LTL) property is invariant under bounded stuttering equivalent.

Theorem 7. If two paths π,π′ are (m,n) bounded stuttering equivalent then for any SE-LTL−X formula φ, π|=mφ
if and only if π′|=nφ.

Now we redefine the unfolding of the transition relation such that bounded stuttering equivalent can be
integrated in our BMC procedure.

Definition 12. Given an LKS M, and a bound k with k≥0, we define
1

0 1 10
[] : () ((, ,) ())

k
Mod
k i i i i ii

M I s R s a s s s a a
−

+ +=
= ∧ ∧ ∧ ≠ ∨ ≠ .

Informally in our new encoding, we require that two consecutive states and events can not be same. The
following theorem guarantees the correctness of our new encoding.

Theorem 8. For some integer k with k≥0, and an SE-LTL−X property φ, if [] []Mod
kM φ∧ is satisfiable then

M|=Eφ.
Since [] []Mod

k kM M→ , the proof of Theorem 8 is easy. In the original bounded model checking equivalent

bounded paths may be searched repeatedly. Therefore some searches are redundant. With respect to SE-LTL−X
properties in our new encoding bounded model checking can avoid searching redundant bounded paths. However,

[]Mod
kM is larger than [M]k. Therefore sometimes the new encoding may be inefficient.

Given an SE-LTL formula, we use the notation Σ(φ) to represent the set of events appearing in φ. Without loss
of generality we assume that the transition relation R for an asynchronous system is expressed as a disjunction of
transitions R1,…,Rn, and for each 1≤i≤n, Ri has only one true assignment. For the specification φ, for each 1≤i≤n,
we look for the transition Ri which represents a transition of a state to its self and the event making Ri does not
belong to Σ(φ). Without loss of generality assume that {Rj+1,…,Rn} are these transitions. Then let R′:=R1∨…∨Rj.

Definition 13. Given an LKS M, and a bound k with k≥0, we define 1
1

0 10
[] : () (, ,)

k
Mod
k ii i iM I s R s a s

−

+=
′= ∧ ∧ .

Theorem 9. For some integer k with k≥0, and an SE-LTL−X property φ, if 1[] []Mod
kM kφ∧ is satisfiable then

M|=Eφ.
Since 1[]Mod

kM is smaller than [M]k and can avoid searching for bounded stuttering equivalent paths, the new

encoding is efficient. We use the Petri nets in Fig.2 as our benchmarks to compare the BMC procedure and the
BMC procedure integrating stuttering equivalence. Table 2 is the experiment which shows that introducing
stuttering equivalence in our BMC procedure can reduce verification time very much.

周从华: 1423 一种基于满足性判定的并发软件验证策略

p5

p8 p9

p3

p7

p2

p6

p4

p10 p11

p13

p12

p15

p1

p14

p1 p2

Petri net PN1

Petri net PN2

p20p19

Fig.2 Two simple Petri nets

6 Conclusion and Future Work

In this paper, we presented an SAT-based Bounded Model Checking procedure for the state/event linear time
temporal logic SE-LTL. We also presented a new method integrating our BMC procedure and stuttering equivalent.

Table 2 Comparing the BMC procedure and the BMC procedure integrating stuttering equivalent
Example Property Stuttering equivalent Bound Error Time (s)

PN1 G¬p20 No 19 Yes 15.594
PN1 G¬p20 Yes 19 Yes 3.141
PN1 G¬(¬p20Up14) No 13 Yes 5.813
PN1 G¬(¬p20Up14) Yes 13 Yes 2.156
PN1 G(p15→FGp16) No 15 Yes 8.812
PN1 G(p15→FGp16) Yes 15 Yes 2.953
PN2 G¬p15 No 5 Yes 27.136
PN2 G¬p15 Yes 5 Yes 19.243
PN2 G¬(¬p5Up4) No 3 Yes 16.854
PN2 G¬(¬p5Up4) Yes 3 Yes 11.346
PN2 G¬(¬p12Up11) No 3 Yes 15.278
PN2 G¬(¬p12Up11) Yes 3 Yes 10.972

The integration reduces the run time of SAT solvers. Our method is also fit for SAT-based BMC of LTL. We
further provided a new verification strategy for concurrent software system which integrates SAT-based BMC,
counterexample-guided abstraction refinement and compositional reasoning. We are developing the tool for
implementing the new strategy. For future work we would like to discuss other equivalent relations.

References:
[1] Chaki S, Clarke EM, Quaknine J, Sharygina N, Sinha N. Concurrent software verification with states, events, and deadlock. Formal

Aspects of Computing, 2004,17(4):461−483.

1424 Journal of Software 软件学报 Vol.20, No.6, June 2009

[2] Biere A, Cimatti A, Clarke EM, Zhu Y. Symbolic model checking without BDDs. Lecture Notes in Computer Science, 1999,1579:

193−207.

[3] Clarke EM, Biere A, Raimi R, Zhu Y. Bounded model checking using satisfiability solving. Formal Methods in System Design,

2001,19(1):7−34.

[4] Wehrheim H. Preserving properties under change. Lecture Notes in Computer Science, 2004,3188:330−343.

[5] Clarke EM, Grumberg O, Jha S, Lu Y, Veith H. Counterexample-Guided abstraction refinement. Lecture Notes in Computer

Science, 2000,1855:154−169.

[6] Clarke EM, Gupta A, Strichman O. SAT-Based counterexample-guided abstraction refinement. IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, 2004,23(7):1113−1123.

[7] Clarke EM, Grumberg O, Jha S, Lu Y, Veith H. Counterexample-Guided abstraction refinement for symbolic model checking.

Journal of the ACM, 2003,50(5):752−794.

[8] Cobleigh JM, Giannakopoulou D, Pasareanu CS. Learning assumptions for compositional verification. Lecture Notes in Computer

Science, 2003,2619:331−346.

[9] Clarke EM, Kroening D, Ouaknine J, Strichman O. Completeness and complexity of bounded model checking. Lecture Notes in

Computer Science, 2003,2937:85−96.

[10] Murata T. Petri nets: Properties, analysis and application. Proc. of the IEEE, 1989,77(4):541−574.

[11] Melzer S, Romer S. Deadlock checking using net unfoldings. Lecture Notes in Computer Science, 1997,1254:352−363.

ZHOU Cong-Hua was born in 1978. He is
a lecture at School of Computer Science
and Telecommunication Engineering,
Jiangsu University. His current research
areas are model checking and information
flow security, etc.

http://www.springerlink.com/content/105633/?p=e07a63f03b4f4187be2a66bfaef1008e&pi=0

