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Abstract:  A CNF formula F is linear if any distinct clauses in F contain at most one common variable. A CNF 
formula F is exact linear if any distinct clauses in F contain exactly one common variable. All exact linear formulas 
are satisfiable[1], and for the class LCNF of linear formulas, the decision problem LSAT remains NP-complete. For 
the subclasses LCNF≥k of LCNF, in which formulas have only clauses of length at least k, the NP-completeness of 
the decision problem LSAT≥k is closely relevant to whether or not there exists an unsatisfiable formula in LCNF≥k, 
i.e., the NP-completness of SAT for LCNF≥k (k≥3) is the question whether there exists an unsatisfiable formula in 
LCNF≥k. S. Porschen et al. have shown that both LCNF≥3 and LCNF≥4 contain unsatisfiable formulas by the 
constructions of hypergraphs and latin squares. It leaves the open question whether for each k≥5 there is an 
unsatisfiable formula in LCNF≥k. This paper presents a simple and general method to construct unsatisfiable 
formulas in k-LCNF for each k≥3 by the application of minimal unsatisfiable formulas to reductions for formulas. It 
is shown that for each k≥3 there exists a minimal unsatisfiable formula in k-LCNF. Therefore, the stronger result is 
shown that k-LSAT is NP-complete for k≥3. 
Key words:  linear CNF formula; unsatisfiability; NP-completeness; minimal unsatisfiable formula; reduction 

摘  要: 合取范式(conjunctive normal form,简称 CNF)公式 F 是线性公式,如果 F 中任意两个不同子句至多有一个

公共变元.如果 F 中的任意两个不同子句恰好含有一个公共变元,则称 F 是严格线性的.所有的严格线性公式均是可

满足的,而对于线性公式类LCNF,对应的判定问题LSAT仍然是NP-完全的.LCNF≥k是子句长度大于或等于 k的CNF
公式子类,判定问题 LSAT≥k 的 NP-完全性与 LCNF≥k 中是否含有不可满足公式密切相关.即 LSAT≥k 的 NP-完全性取

决于 LCNF≥k是否含有不可满足公式.S.Porschen 等人用超图和拉丁方的方法构造了 LCNF≥3和 LCNF≥4中的不可满

足公式,并提出公开问题:对于 k≥5,LCNF≥k 是否含有不可满足公式?将极小不可满足公式应用于公式的归约,引入了

一个简单的一般构造方法 .证明了对于 k≥3,k-LCNF 含有不可满足公式 ,从而证明了一个更强的结果 :对于

k≥3,k-LSAT 是 NP-完全的. 
关键词: 线性 CNF 公式;不可满足性;NP-完全性;极小不可满足公式;归约 
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中图法分类号: TP301   文献标识码: A 

1   Introduction 

A literal is a propositional variable or a negated propositional variable. A clause C is a disjunction of literals, 
C=(L1∨…∨Lm) or a set {L1,…,Lm} of literals. A formula F in conjunctive normal form (CNF) is a conjunction of 
clauses, F=(C1∧…∧Cn) or a set {C1,…,Cn} of clauses, or a list [C1,…,Cn] of clauses. var(F) is the set of variables 
occurring in the formula F and var(C) is the set of the variables in the clause C. We denote #cl(F) as the number of 
clauses of F and #var(F) (or |var(F)|) as the number of variables occurring in F. CNF(n,m) is the class of CNF 
formulas with n variables and m clauses. The deficiency of a formula F is defined as #cl(F)−#var(F), denoted by 
d(F). A formula F is minimal unsatisfiable (MU) if F is unsatisfiable and F−{C} is satisfiable for any clause C∈F. It 
is well known that F is not minimal unsatisfiable if d(F)≤0[1,2]. So, we denote MU(k) as the set of minimal 
unsatisfiable formulas with deficiency k≥1. Whether or not a formula belongs to MU(k) can be decided in 
polynomial time[3]. 

A CNF formula F is linear if any two distinct clauses in F contain at most one common variable. A CNF 
formula F is exact linear if any two distinct clauses in F contain exactly one common variable. We define 
k-CNF:={F∈CNF|(∀C∈F)(|C|=k)}, LCNF:={F∈CNF|F is linear}, XLCNF:={F∈CNF|F is exact linear}, LCNF≥k:= 
{F∈LCNF|(∀C∈F)(|C|≥k)} and k-LCNF:={F∈LCNF|(∀C∈F)(|C|=k)}. The decision problems of satisfiability are 
denoted as k-SAT, LSAT, XLSAT and k-LSAT for restricted instances to the corresponding to the above subclasses, 
respectively. 

It is shown that every exact linear formulas is satisfiable[4], but LSAT remains NP-completeness[4−6]. For the 
subclasses LCNF≥k, LSAT≥k remains NP-completeness if there exists an unsatisfiable formula in LCNF≥k

[4−6]. 
Therefore, the NP-completeness of LSAT≥k for k≥3 is the question whether there exists an unsatisfiable formula in 
LCNF≥k. We are interested in some NP-complete problems for linear formulas, and get some simplified 
NP-complete problem by constructing unsatisfiable linear formulas. It is helpful to analyze complexity of 
resolutions, and to find some effective algorithm for satisfiability. 

In Refs.[4,6], by the constructions of hypergraphs and latin squares, the unsatisfiable formulas in LCNF≥3 and 
LCNF≥4 are constructed, respectively. But, the method is too complex and has no generalization. In Ref.[4], it leaves 
the open question whether for each k≥5 there is an unsatisfiable formula in LCNF≥k. 

It is well known that 3-SAT is NP-complete. In the transformation from a CNF formula to a 3-CNF formula, we 
found a basic application of minimal unsatisfiable: for a clause C=(L1∨L2∨…∨Lp) (p>3) one can introduce (p−3) 
new y1,y2,…,yp−3 variables, and split C into a partition {L1,L2},{L3},…,{Lp−2},{Lp−1,Lp} of C, and then construct 
(p−2) clauses (L1∨L2∨y1),(L3∨¬y1∨y2),…,(Lp−2∨¬yp−4∨yp−3),(Lp−1∨Lp∨yp−3). In fact [y1,(¬y1∨y2),…,(¬yp−4∨yp−3), 
¬yp−3] is a minimal unsatisfiable in MU(1), and the partition {L1,L2},{L3},…,{Lp−3},{Lp−1,Lp} of C corresponds to a 
CNF formula [(L1∨L2),L3,…,Lp−2,(Lp−1∨Lp)]. Thus, the formula [(L1∨L2∨y1),(L3∨¬y1∨y2),…,(Lp−2∨¬yp−4∨yp−3), 
(Lp−1∨Lp∨¬yp−3)] is viewed as clauses-disjunction of [(L1∨L2),L3,…,Lp−2,(Lp−1∨Lp)] and [y1,(¬y1∨y2),…, 
(¬yp−4∨yp−3),¬yp−3] at the corresponding positions of clauses, respectively. Additionally, an unit clause L 
corresponds to the formula [(L∨y∨z),(L∨y∨¬z),(L∨¬y∨z),(L∨¬y∨¬z)], where [(y∨z),(y∨¬z),(¬y∨z),(¬y∨¬z)] is a 
minimal unsatisfiable formula MU(2), and a clause (L1∨L2) corresponds to the formula [(L1∨L2∨y),(L1∨L2∨¬y)], 
where [y,¬y]=y∧¬y is a minimal unsatisfiable formula MU(1). It implies that a subclause of the original clause can 
be copied. 

Based on this observation and the characterization of minimal unsatisfiable formulas, we introduce a generalize 
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method in Lemma 1 and Lemma 2, which we can transform a CNF formula into a required CNF formula by 
constructing proper minimal unsatisfiable formulas. We have applied this method to reduction for formulas. In 
Ref.[7], we present an algorithm to solve an open problem in Ref.[8], which for fixed k and t (3≤t<k), one can 
transform a k-CNF formula F to a t-CNF formula F′ in linear time on the size of F with the same satisfiability. For 
some simplified NP-complete problems restricted instances to the subclass (k,s)-CNF the method is also used[9,10], 
where (k,s)-CNF is a subclass of CNF, F∈(k,s)-CNF if and only if (iff) F has only clauses of length k, and the 
number of occurrences of each variable in F is less than s. 

In this paper, we present a simple and general method to construct unsatisfiable formulas in k-LCNF for each 
k≥3 by the application of minimal unsatisfiable formulas and the induction. It is shown for each k≥3 that there exists 
a minimal unsatisfiable formula in k-LCNF. Based on existences of minimal unsatisfiable formulas in k-LCNF, the 
stronger result is shown that k-LSAT is NP -complete for k≥3. In our proof, we introduce two algorithms: Algorithm 
1 is for transforming a k-CNF to a linear formula and Algorithm 2 is for lengthening clauses of linear formulas. 

2   Minimal Unsatisfiable Formulas and Its Applications 

A clause C=(L1∨L2∨…∨Ln) can be represented as a set {L1,L2,…,Ln} of literals. Similarly, A CNF formulas 
F=(C1∧C2∧…∧Cm) can be represented as a set {C1,C2,…,Cm} of clauses, or a list [C1,C2,…,Cm] of clauses. var(F) is 
the set of variables occurring in the formula F and var(C) is the set of the variables in the clause C. We define 

1 | ii mF C
≤ ≤

| |= |∑  as the size of F. In this paper, the formulas mean CNF formulas. 

A formula F=[C1,…,Cm] with n variables x1,…,xn in CNF(n,m) can be represented as a n×m matrix (ai,j), called 
the representation matrix of F, where aij=+ if xi∈Cj, aij=− if ¬xi∈Cj, otherwise aij=0 (or, blank). 

A formula F is called minimal unsatisfiable if F is unsatisfiable, and for any clause f∈F, F−{f} is satisfiable. 
We denote MU as the class of minimal unsatisfiable formulas, and MU(k) as the class of minimal unsatisfiable 
formulas with deficiency k. Let C=(L1∨…∨Ln) be a clause. We view a clause as a set of literals. The collection 
C1,…,Cm of subsets of C (as a set) is a partition of C, where 

1 ii m
C C

≤ ≤
=∪  and Ci∩Cj=φ for any 1≤i≠j≤m, which 

corresponds to a formula FC=C1∧…∧Cm. We call FC as a partition formula of C. Specially, the collection 
{L1},…,{Ln} of singleton subsets of C is called the simple partition of C, and the formula [L1,…,Ln]=L1∧…∧Ln is 
called the simple partition formula of C. 

Let F1=[f1,…,fm] and F2=[g1,…,gm] be formulas. We denote F1∨clF2=[f1∨g1,…,fm∨gm]. Similarly, let C be a 
clause and F=[f1,…,fm] a formula, denote C∨clF=[(C∨clf1),…,(C∨clfm)]. 

Lemma 1. Let C=(L1∨…∨Ln) (n≥2) be a clause and FC=[C1,…,Cm] (m≥2) a partition formula of C. For any 
MU formula H=[f1,…,fm] with var(C)∩var(H)=φ, if a truth assignment ν satisfies the formula FC∨clH, then ν(C)=1. 
Conversely, for any truth assignment ν0 satisfying C, ν0 can be extended into a truth assignment ν satisfying FC∨clH. 

Proof:  Let C=(L1∨…∨Ln) be a clause and FC=[C1,…,Cm] (m≥2) a partition formula of C. Without losses of 
generality (w.l.o.g.), we assume 

11 1( ... )iC L L= ∨ ∨ ,
1 22 1( ... )i iC L L+= ∨ ∨ ,…,

1 1( ... )
mm i nC L L

− += ∨ ∨ . 

Let ν be a truth assignment satisfying FC∨clH. Since H is minimal unsatisfiable, we have ν(fk)=0 for some 
(1≤k≤m). It must be ν(Ck)=1. It implies ν(C)=1 since Ck is a subclause of C. 

Conversely, suppose that C is satisfied by a truth assignment ν0. Since C is disjunction of literals L1,…,Ln, 
there exists some k (1≤k≤n) such that ν0(Lk)=1. W.l.o.g., we assume ν0(L1)=1, then ν0(C1)=1. Since H is minimal 
unsatisfiable, we have H−{f1} is satisfiable, thus there exists a truth assignment ν1 such that ν1(H−{f1})=1. Note that 
var(C)∩var(H)=φ, we can join into a truth assignment ν from ν0 and ν1, which for x∈var(C)∪var(H), ν(x)=ν0(x) for 
x∈var(C), and ν(x)=ν1(x) for x∈var(H). It is clear that ν is a truth assignment satisfying FC∨clH. □ 

Based on the method in Lemma 1 for a clause, we have the following Lemma 2. It presents a method 
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constructing the required formulas.  
Lemma 2. Let F=C1∧…∧Cn be a formula with |Ci|≥2 for 1≤i≤n. Suppose that for each 1≤i≤n, Fi is a partition 

formula of Ci and #cl(Fi)=mi≥2. Let H1,…,Hn be MU formulas satisfying the following conditions: 
(1) For each 1≤i≤n, #cl(Hi)=mi. 
(2)

1
( ( )) ( )ii n

var H var F
≤ ≤

∩ = ∅∪ . 

(3) For any 1≤i≠j≤n, var(Hi)∩var(Hj)=∅. 
We define F*:=(F1∨clH1)∧(F2∨clH2)∧…∧(Fn∨clHn). Then, F is satisfiable iff F* is satisfiable. 
Proof:  (⇒) Assume that F is satisfiable. We have a truth assignment ν0 over var(F) such that ν0(F)=1. It 

implies ν0(Ci)=1 for each 1≤i≤n. By the proof of Lemma 1, we can extend ν0 into a truth assignment νi over 
var(F)∪var(Hi) such that νi(Fi∨clHi)=1. By condition (3), we can combine ν1,…,νn into a truth assignment ν* over 
var(F)∪var(H1)∪…∪var(Hn) such that ν*(Fi∨clHi)=1 for each 1≤i≤n, where ν*(x):=ν0(x) for x∈var(F) and 
ν*(x):=νi(x) for x∈var(Hi) (1≤i≤n). It means that F* is satisfiable. 

(⇐) Assume that F* is satisfiable. We have a truth assignment ν over var(F)∪var(H1)∪…∪var(Hn) such that 
ν(F*)=1. It implies ν(Fi∨clHi)=1 for each 1≤i≤n. Note that for each 1≤i≤n, Hi is minimal unsatisfiable and 
#cl(Hi)=#cl(Fi)=mi. We have νi(Hi)=0 for each 1≤i≤n, where νi is the restriction of ν over var(Hi). By the defini- 
tion of Fi∨clHi and ν(Fi∨clHi)=1, there exists a clause Ci,j of Fi such that ν0(Ci,j)=1, where ν0 is the restriction of ν 
over var(F). Since Ci,j is a subclause of Ci, we have ν0(Ci)=1. So, we have ν0(Ci)=1 for each 1≤i≤n. It means that F 
is satisfiable. □ 

We now introduce the following four MU formulas. 
(1) An=[(x1∨…∨xn),(¬x1∨x2),(¬x2∨x3),…,(¬xn−1∨xn),(¬xn∨x1),(¬x1∨…∨¬xn)]∈MU(2). Its representation matrix is 

1

2

1n

n

x
x

x
x

−

+ − + −⎛ ⎞
⎜ ⎟+ + − −⎜ ⎟
⎜ ⎟+
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟+ + − −⎝ ⎠

# # #
# # " #

. 

We take a formula 1 2 2 3 1 1[( ) ( ) ... ( ) ( )]c
n n n nA x x x x x x x x−= ¬ ∨ , ¬ ∨ , , ¬ ∨ , ¬ ∨ . Clearly, both c

nA +{(x1∨…∨xn)} and 
c
nA +{(¬x1∨…∨¬xn)} are satisfiable, and c

nA +{(x1∨…∨xn)|=(x1∧…∧xn)} and c
nA +{(¬x1∨…∨¬xn)|=(¬x1∧…∧ 

¬xn)}. 
Clearly, the subformula c

nA  of An is satisfiable, and for any truth assignment τ satisfying c
nA  it holds that 

τ(x1)=…=τ(xn). The formula c
nA  represents a cycle of implication: x1→x2→…→xn→x1. 

(2) Bn=[(x1∨x3),(¬x1∨x2),…,(¬xs∨xs+1),…,(¬xn−2∨xn−1),(¬xn−1∨¬x3)]∈MU(1), where n≥6. The representation 
matrix of B6 is 

1

2

3

4

5

x
x
x
x
x

+ −⎛ ⎞
⎜ ⎟+ −⎜ ⎟
⎜ ⎟+ + − −
⎜ ⎟

+ −⎜ ⎟
⎜ ⎟+ −⎝ ⎠

. 

Note that #cl(Bn)=n and #var(Bn)=n−1, and Bn is a linear formula for n≥6. 
(3) The standard MU formulas Sn with n variables, x1,…,xn, is defined by 

1

1
1( ... ) {0 1}

( ... )n
n

n
n nS x xεε

ε ε, , ∈ ,
= ∧ ∨ ∨ , 
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where 0
i ix x= and 1

i ix x= ¬ for 1≤i≤n. Denote the clause 1
1 ,..., 1 ... n

n nX x xεε
ε ε = ∨ ∨ . 

The representation matrix of S3 is 

1

2

3

x
x
x

+ + + + − − − −⎛ ⎞
⎜ ⎟+ + − − + + − −⎜ ⎟
⎜ ⎟+ − + − + − + −⎝ ⎠

. 

The above MU formulas are useful in constructions of the required formulas in this paper. 

3   Construction of Linear Minimal Unsatisfiable Formulas 

In this section, we introduce a subclass of CNF, called linear CNF formulas, and present a general constructing 
method of linear MU formulas. 

Definition 1. 
(1) A formula F∈CNF is called linear if 

(a) F contains no pair of complementary unit clauses, and 
(b) For all C1,C2∈F with C1≠C2, |var(C1)∩var(C2)|≤1. 

Let LCNF denote the class of all linear formulas. 
(2) A formula F∈CNF is called exact linear if F is linear, and for all C1,C2∈F with C1≠C2, |var(C1)∩ 

var(C2)|=1. 
For example, the formula Bn is linear for n≥6. Let (XLCNF) LCNF denote the class of all (exact) linear 

formulas. Similarly, denote by (XLCNF≥k) LCNF≥k the class of all (exact) linear formulas, in which formulas have 
only clauses of length at least k∈N. 

Lemma 3. Let F=[C1,…,Cm] be a MU formula with |Ci|=li≥2 for each 1≤i≤m, and let 1[ ... ]
i

i i
i lG f f= , ,  be a 

l inear MU formula for 1≤ i≤m ,  where  var(Gi)∩var(Gj )=φ  for  any 1≤ i≠ j≤m .  Then,  the formula 

1 ( )
ii m C cl iF F G∗

≤ ≤:= ∧ ∨  is a linear MU formula, where 
iCF  is the simple partition formula of clause Ci for 1≤i≤m, 

and (var
1

var( ) ( ( ))ii m
F var G φ

≤ ≤
∩ =∪ . 

Proof:  Let F=[C1,…,Cm] be a MU formula with |Ci|=li≥2 for each 1≤i≤m. For 1≤i≤m, we assume that 

1( ... )
ii i i lC L L, ,= ∨ ∨  and define a block formula: 1 1[( ) ... ( )]

i i i

i i
C cl i i i l lF G L f L f, ,∨ := ∨ , , ∨ , where 1[ ... ]

i iC i i lF L L, ,= , , , 

and the the formula: 1 ( )
ii m C cl iF F G∗

≤ ≤:= ∧ ∨ . 

(1) F* is minimal unsatisfiable. 
Firstly, by Lemma 2, F* is unsatisfiable since F is unsatisfiable and G1,…,Gm are minimal unsatisfiable. 

Secondly, F* is minimal unsatisfiable. For any clause g∈F*, w.l.o.g., we assume 1
1 1 1( )g L f,= ∨ , and consider 

the satisfiability of F*−{g}. 
Since F is minimal unsatisfiable, there exists a truth assignment τ0 over var(F) satisfying [C2,…,Cm], and τ0 

forces each literal in C1 to be false, i.e., 
10 1 1 0 1( ) ... ( ) 0lL Lτ τ, ,= = = , and τ0(C2)=…=τ0(Cm)=1. Since G1 is minimal 

unsatisfiable, there exists a truth assignment τ1 over var(G1) satisfying 1
1 1{ }G f− . Thus, we have a truth assignment 

1τ ∗  satisfying 
1

1
1 1 1 1( ) {( )}C clF G L f,∨ − ∨  by joining τ0 and τ1, where 1 0( ) ( )x xτ τ∗ =  for x∈var(F) and 1 1( ) ( )x xτ τ∗ =  

for x∈var(G1). 
For each 2≤k≤m, since τ0(Ck)=1, there is a literal (1 )

kk j k kL j l, ≤ ≤  such that 0 ( ) 1
kk jLτ , = . By the minimal 

satisfyability of Gk, we have that { }
k

k
k jG f−  is satisfiable. Therefore, we have a truth assignment τk over var(Gk) 

satisfying { }
k

k
k jG f− . Thus, we have a truth assignment kτ ∗  satisfying ( )

kC cl kF G∨  by joining τ0 and τk, where 

0( ) ( )k x xτ τ∗ =  for x∈var(F) and ( ) ( )k kx xτ τ∗ =  for x∈var(Gk). 
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Finally, we have a truth assignment τ* satisfying F*−{g} by combining τ0,τ1,…,τm, where τ*(x)=τ0(x) for 
x∈var(F) and τ*(x)=τk(x) for x∈var(Gk) (1≤k≤m). 

(2) F* is linear. 
For any distinct clauses f,g∈F*, we consider the following cases. 
Case 1: Both f and g are in the same block formula. 

There exists some k (1≤k≤m) such that ( )k
k s sf L f,= ∨  and ( )k

k s sg L f′ ′,= ∨  for some 1≤s≠s′≤lk. By s≠s′, 

( ) ( ) ( ) ( )k k
s svar f var g var f var f ′∩ ⊆ ∩ . Since Gk is linear, we have ( ) ( ) 1k k

s svar f var f ′| ∩ |≤ . Thus, |var(f)∩var(g)|≤1. 

Case 2: f and g are in the different block formulas. 
There exist some k and k′ (1≤k≠k′≤m) such that ( )

kC cl kf F G∈ ∨  and ( )
kC cl kg F G

′ ′∈ ∨ . By constructions of 

block formulas, we have ( )k
k s sf L f,= ∨  for some 1≤s≤lk and ( )k

k s sg L f ′
′ ′ ′,= ∨  for some 1 ks l ′′≤ ≤ . By k≠k′, we 

have ( ) ( )k kvar G var G ′∩ = ∅ . Thus, ( ) ( ) ( ) ( )k s k svar f var g var L var L ′ ′, ,∩ ⊆ ∩ . It implies that |var(f)∩var(g)|≤1. □ 

In Lemma 3, we present a method constructing MU formulas k-LCNF for k≥3 by Sn and Bn (n≥6). 
We consider firstly the construction of formulas for the case of k=3. 
We take MU formulas S6 and B6 with var(S6)∩var(B6)=φ in Section 2. Note that B6 is a linear MU formula, and 

|C|=6 for each C∈S6, and |C|=2 for each C∈B6. 
For each clause 61

1 6,..., 1 6 6( ... )X x x Sεε
ε ε = ∨ ∨ ∈ , we take the simple partition formula 61

1 6,..., 1 6[ ... ]F x xεε
ε ε = , , =  

61
1 6...x xεε ∧ ∧  of 

1 6,...,Xε ε , and take a copy of B6, denoted by 1 6,...,
6Bε ε , and define a formula 1 6

1 6

,...,
,..., 6( )clF Bε ε

ε ε ∨ . 

It restricts 1 6 1 6,..., ,...,
6 6( ) ( )var B var Bε ε ε ε′ ′∩ = ∅  for any distinct 6

1 6 1 6( ... ) ( ... ) {0 1}ε ε ε ε′ ′, , , , , ∈ , , and 1 6,...,
6( )var Bε ε  

6( )var S∩ = ∅  for any (ε1,…,ε6)∈{0,1}6. 

We now define the following formula 
1 6

6 1 61 6

,...,
3 ,..., 6( ... ) {0 1}

( )clSL F Bε ε
ε εε ε, , ∈ ,

:= ∧ ∨ . 

SL3 is a linear MU formula by Lemma 3. 
Note that #cl(SL3)=6⋅26, and |C|=3 for each C∈SL3. 
We define inductively a counting functions of clauses cl(k) for k≥3: cl(3)=6⋅26 and cl(k+1)=cl(k)⋅2cl(k) for k≥3. 

For the case of k≥3, suppose that the linear formula SLk has been constructed such that SLk is a linear MU formula, 
and the length of each clause in SLk equals to k. 

By Lemma 3, we define inductively the following linear MU formula 
1 ( )

( ) 1 ( )1 ( )

,...,
1 ,...,( ... ) {0 1}

( )cl k
cl k cl kcl k

k cl kSL F SLε ε
ε εε ε+ , , ∈ ,

:= ∧ ∨  

where, for (ε1,…,εcl(k))∈{0,1}cl(k). 
(a)

1 ( ),..., cl k
Fε ε  is the simple partition formula of clause 

1 ( ),..., ( )cl k cl kX Sε ε ∈ . 

(b) 1 ( ),..., cl k
kSLε ε  is a copy SLk with new variables. 

Scl(k) is minimal unsatisfiable, SLk is both minimal unsatisfiable and linear. By Lemma 3, SLk+1 is a linear MU 
formula. Thus, we have the following result: 

Theorem 1. For each positive integer k≥3, k-LCNF contains MU formulas. 

4   NP-Completeness of SAT for Linear Formulas 

In this section, we consider complexities of decision problems of satisfiability for restricted instances in LCNF 
and LCNF≥k (k≥3), respectively. 

Let F be a formula, we denote pos(x,F) (resp. neg(x,F)) as the number of positive (resp. negative) occurrence 
of variable x in F, and write occs(x,F)=pos(x,F)+neg(x,F). Sometimes, we denote Frest as a subformula of F, which 
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consists of rest clauses of F. 
For a formula F=[C1,…,Cm], the following facts are clear: 
(1) If pos(x,F)>0 and neg(x,F)=0 (or, pos(x,F)=0 and neg(x,F)>0) for some x∈var(F), then the resulting 

formula F′ by deleting clauses, in which x occurs, has the same satisfiability with F. 
(2) If 1 2[( ) ( ) ]restF x y C x y C F′ ′= ∨ ∨ , ¬ ∨ ¬ ∨ ,  (or 1 2[( ) ( ) ]restF x y C x y C F′ ′= ∨ ¬ ∨ , ¬ ∨ ∨ , ), where Frest=[C3,…, 

Cm], such that pos(x,F)=neg(x,F)=1 and pos(y,F)=neg(y,F)=1, then the formula 1[( )F x y C′ ′= ∨ ∨ ,  

2 2( ) ( ) ]restx z C y z C F′ ′¬ ∨ ∨ , ¬ ∨ ¬ ∨ ,  (o r  1 2 2[( ) ( ) ( ) ])restF x y C x z C y z C F′ ′ ′ ′= ∨ ¬ ∨ , ¬ ∨ ∨ , ∨ ¬ ∨ ,  ha s  the 

 same satisfiability with F, where z is a new variable. 
From now on, for the sake of description, we assume that the formulas satisfy the following conditions: (for a 

formula F) 
(1) For each x∈var(F), pos(x,F)>0 and neg(x,F)>0, and 
(2) For any x,y∈var(F) (x≠y), if pos(x,F)=neg(x,F)=1 and pos(y,F)=neg(y,F)=1 then the number of clauses 

containing x or y is at least three. 
Lemma 4. Let F=[(x∨f1),…,(x∨fs),(¬x∨g1),…,(¬x∨gt),Frest] be a CNF formula with pos(x,F)=s and neg(x,F)=t 

and occs(x,F)=s+t≥3, where Frest is the subformula of F. By introducing (s+t) new variables x1,…,xs+t, we define a 
formula 

F[x]:=[(x1∨f1),…,(xs∨fs),(¬xs+1∨g1),…,(¬xs+t∨gt),Frest]+[(¬x1∨x2),(¬x2∨x3),…,(¬xs+t−1∨xs+t),(¬xs+t∨x1)]. 
Then, we have that: 
(1) F is satisfiable if and only if F[x] is satisfiable, and 
(2) For any distinct clauses C,C′∈F[x], |var(C)∩var(C′)∩{x1,…,xs+t}|≤1. 
Proof:  Note that var(F)∩{x1,…,xs+t}=φ and var(F[x])=(var(F)−{x})∪{x1,…,xs+t}. 
(1) Assume that F is satisfied by a truth assignment τ over var(F), then F[x] is satisfied by the truth assignment 

τ[x] over var(F[x])=(var(F)−{x})∪{x1,…,xs+t}, where τ[x](y)=τ(y) if y∈(var(F)−{x}), and τ[x](y)=τ(y) if y∈{x1,…,xs+t}. 
Conversely, we assume that F[x] is satisfied by a truth assignment τ′ over var(F[x]). It implies that τ′ satisfies the 

subformula [(¬x1∨x2),(¬x2∨x3),…,(¬xs+t−1∨xs+t),(¬xs+t∨x1)] of F[x]. The subformula [(¬x1∨x2),(¬x2∨x3),…, 
(¬xs+t−1∨xs+t),(¬xs+t∨x1)] represents a cycle of implication: x1→x2→x3→…→xs+t→x1. Thus, τ′(x1)=…=τ′(xs+t). 
Therefore, F is satisfied by a truth assignment τ″ over var(F), where τ″(y)=τ′(y) for y∈(var(F)−{x}), and 
τ″(x)=τ′(x1). 

(2) It is clear that for any distinct clauses C,C′∈F[x], |var(C)∩var(C′)∩{x1,…,xs+t}|≤1, since the formula 
[x1,…,xs+t,(¬x1∨x2),(¬x2∨x3),…,(¬xs+t−1∨xs+t),(¬xs+t∨x1)] is linear when s+t≥3. □ 

The following example help readers to observe the resulting formula by replacing a variable with new variables 
in proof of Lemma 4. 

Example 1. Let F be a formula. Its representation matrix is 
x
y
z

+ + − −⎛ ⎞
⎜ ⎟+ − − −⎜ ⎟
⎜ ⎟− + − +⎝ ⎠

. 

Then, the representation matrix of F[x] is 
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1

2

3

4

x
x
x
x
y
z

+ − +⎛ ⎞
⎜ ⎟+ + −⎜ ⎟
⎜ ⎟− + −
⎜ ⎟

− + −⎜ ⎟
⎜ ⎟+ − − −
⎜ ⎟⎜ ⎟− + − +⎝ ⎠

. 

By Lemma 4, we have the following algorithm for reducing a formula F to a linear formula Flin in polynomial 
time of |F|. 

Algorithm 1. Linear transformation for CNF formulas. 
Input: A formula F with variables x1,…,xn; 
Output: A linear formulas Flin. 
begin 

Flin:=F; i:=1; 
while (i≤n)∧(occs(xi,Flin)≥3) do 
(let 1 1[( ) ... ( ) ( ) ..., ( ) ]lin lin

i i s i i t restF x f x f x g x g F= ∨ , , ∨ , ¬ ∨ , ¬ ∨ , , (s+t=(occs(xi,Flin))). 

Introducing new variables yi,1,…,yi,s+t; 

1 1 1 1

1 2 2 3 1 1

[( ) ... ( ) ( ) ..., ( ) ]
           [( ) ( ) ... ( ) ( )];

lin lin
i i s s i s i s t t rest

i i i i i s t i s t i s t i

F y f y f y g y g F
y y y y y y y y
, , , + , +

, , , , , + − , + , + ,

:= ∨ , , ∨ , ¬ ∨ , ¬ ∨ , +

¬ ∨ , ¬ ∨ , , ¬ ∨ , ¬ ∨
 

i:=i+1; 
end_do; 
output Flin; 

end; 

Algorithm 1 can be completed in times of O(mn), and we have 
22 12 3 ( )) 3lin

in i nF n occs x F F
+ ≤ ≤

| |= + , ≤ | |∑ , 

where n=|var(F)| and m=#cl(F), n2=|{x∈var(F)|occs(x,F)=2|. 
Theorem 2. LSAT is NP-complete, where LSAT is the decision problem of satisfiability for restricted instances 

in LCNF. 
Proof:  Let F be a 3-CNF formula with variables x1,…,xn We assume that F satisfies the following conditions: 
(1) For each x∈var(F), pos(x,F)>0 and neg(x,F)>0, and 
(2) For any x,y∈var(F) (x≠y), if pos(x,F)=neg(x,F)=1 and pos(y,F)=neg(y,F)=1, then the number of clauses 

containing x or y is at least three. 
W.l.o.g., let var(F)={x1,…,xn}={x1,…,xm}∪{xm+1,…,xn}, where 0≤m≤n, and occs(xi,F)=2 for 1≤i≤m, and 

occs(xj,F)≥3 for m+1≤j≤n. 
By the assumption, for any distinct clauses C,C′∈F, we have 

 |var(C)∩var(C′)∩{x1,…,xm}|≤1 (*) 
By Algorithm1, F can be transformed into Flin in polynomial times of |F|, and only variables xm+1,…,xn are 

replaced by new variables. 
For any distinct clauses f,g∈Flin, the followings are true: 
(1) If both f and g come from the original clauses in F by replacing variables, then |var(f)∩var(g)∩ 

{x1,…,xm}|≤1 by Eq.(*), and var(f)∩var(g)∩(var(Flin)−{x1,…,xm})=φ by the proof of Lemma 4. It implies 
|var(f)∩var(g)|≤1. 

(2) If either f or g comes from the original clause in F by replacing variables, and the other is a new additional 
clause in Algorithm 1, then |var(f)∩var(g)|=|var(f)∩var(g)∩(var(Flin)−{x1,…,xm})|≤1 by the proof of Lemma 4. 
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(3) If neither f nor g comes from the original clauses in F by replacing variables, then var(f)∩var(g)∩{x1,…, 
xm})=φ and |var(f)∩var(g)∩(var(Flin)−{x1,…,xm})|≤1 by the proof of Lemma 4. 

Finally, |var(f)∩var(g)|≤1. Thus, Flin is linear. 
By Lemma 4, F is satisfiable if and only if Flin is satisfiable. 
Flin can be computed from F in polynomial time of F. By NP-completeness of 3-SAT we have LSAT is 

NP-complete. □ 
Lemma 5. Let F=[C1,…,Cm] be a linear formula and G=[f1,…,fn] a linear MU formula. We define a formula 

1 1 2 2[( ) ... ... ]m nF C f C C f f′ ′:= ∨ , , , , , , , where var(F)∩var(G)=φ and 1f ′  is a nonempty subclause of f1. Then, F′ is a 

linear formula, and F is satisfiable if and only if F′ is satisfiable. 
Proof:  It is clear that F′ is linear, because of var(F)∩var(G)=φ and linearity of F and G. 
By renaming of literals in G, i.e., ¬x is renamed to x, we can assume that f1 contains only positive literals. Let 

f1=(y1∨…∨yt), and 1( ... )s sf y y′ = ∨ ∨ , where 1≤s≤t. 

Since G is minimal unsatisfiable, any truth assignment τG satisfying subformula [f2,…,fn] forces variables 
y1,…,yt to be false. 

Assume that F is satisfiable, then there exists a truth assignment τ1 satisfying F. Since G is minimal 
unsatisfiable, [f2,…,fn] is satisfiable, and then there exists a truth assignment τ2 satisfying [f2,…,fn], and 
τ2(y1)=…=τ2(yt)=0. We have a truth assignment τ over var(F)∪var(G) satisfying F′, where τ(x)=τ1(x) for x∈var(F), 
and τ(x)=τ2(x) for x∈var(G). 

Conversely, we assume that F′ is satisfiable, then there exists a truth assignment τ satisfying F′. Thus, the 
restriction τ|var(G) of τ over var(G) satisfies [f2,…,fn], and τ|var(G)(y1)=…=τ|var(G)(yt)=0. Similarly, the restriction 
τ|var(F) of τ over var(F) satisfies [C2,…,Cm]. Since 1( ) 1sC fτ ′∨ =  and τ|var(G)(y1)=…=τ|var(G)(ys)=0, we have τ(C1)=1 

It means that τ|var(F) satisfies F. □ 
Lemma 5 represents a method lengthening clauses. 
Lemma 6. For any fixed positive integer k≥3, k-SAT is NP-complete. 
Proof:  It is sufficient to show that 3-SAT can be reduced polynomially to k-SAT for k>3. Let F=[C1,…,Cm] be 

a 3-CNF formula, and l=k−3. We define a k-CNF formula ( )
1 ( )i

i m i cl lF C S≤ ≤′ := ∧ ∨ , where ( )i
lS  is a copy of the 

standard MU formula Sl (in Section 2) with new variables for 1≤i≤m. Clearly, |F′|=2l|F|, where 2l is a constant for 
fixed k. Similar to the proof of Lemma 2, we can show that F is satisfiable if and only if F′ is satisfiable. □ 

Theorem 3. For any fixed positive integer k≥3, k-LSAT is NP-complete, where k-LSAT is the decision problem 
of satisfiability for restricted instances in k-LCNF. 

Proof:  It is sufficient to show that k- SAT can be reduced polynomially to k-LSAT by Lemma 6. 
Let F=[C1,…,Cm] be a k-CNF. W.l.o.g., we assume occs(x,F)≥3 for each x∈var(F). We now transform F into a 

formula F* in k-LCNF by the following two stages. 
Stage 1: Call Algorithm 1 (Linear Transformation for CNF formulas) to transform F into a linear formula Flin. 

Note that for any clause C∈ Flin |C|=k or |C|=2. 
Stage 2: Lengthen clauses of the length 2 in Flin. 
By Theorem 1, we can take a linear MU formula G in k-LCNF. Further, we can assume G=[(y1∨…∨yk),f1,…,fl] 

where |fi|=k for 1≤i≤l. Define H:=[(y3∨…∨yk),f1,…,fl]. The following algorithm generates a linear formula F* in 
k-LCNF. 

Algorithm 2. Lengthening clauses in linear formulas. 
Input: The formula Flin; 
Output: A linear formula F* in k-LCNF. 
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begin 
F*:=Flin; 
while ((∃C∈Ffin)(|C|=2)) do 

taking a copy 3 1[( ... ) ... ]c c c c
k ly y f f∨ ∨ , , ,  of H with new variables; 

3 1( { }) ( ... ) [ ... ]c c c c
k lF F C C y y f f∗ ∗:= − + ∨ ∨ ∨ + , , ; 

end_do; 
output F*; 

end; 
(For formulas F1 and F2, F1+F2 means F1∧F2). 
The above stages can be completed in polynomial time of |F|, and we have |F*|=|F|⋅|H|. 
By Lemma 4, F is satisfiable iff Flin is satisfiable. By Lemma 5, Flin is satisfiable iff F* is satisfiable. Thus, 

k-SAT can be reduced polynomially to k-LSAT. □ 

5   Conclusions and Future Work 

Based on the application of minimal unsatisfiable formulas and the induction, we present a simple and general 
method to construct some linear formulas minimal unsatisfiable in k-CNF for each k≥3, which is stronger than the 
open problem whether or not there are unsatisfiable formulas in LCNF≥k

[5,6]. Based on existences of minimal 
unsatisfiable formula in k-LCNF for k≥3, we show that the decision problem k-LSAT is NP-complete for k≥3. 
Additionally, we present two algorithms in the proof for transforming a k-CNF to a linear formula and lengthening 
clauses of linear formulas, respectively. The idea of algorithms is helpful for constructing other linear formulas. The 
future work is to investigate deeply structures and characterizations of linear formulas, and to apply linear formulas 
to analyzing complexity of resolutions and modifying effective algorithms for satisfiability. 
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