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Abstract:  This paper proposes a ternary stationary subdivision scheme for quadrilateral mesh. For regular and 
irregular quadrilateral meshes, different subdivision masks are applied to generate new vertices. The number of 
faces on the refined mesh is about nine times than that of the coarse mesh after every subdivision step. The limit 
surface generated by the new method is C2 continuous for a regular mesh and C1 continuous for an irregular mesh. 
Compared with typical subdivision schemes, the proposed scheme has faster convergence speed and the ability to 
solve arbitrary topological quadrilateral mesh. Some examples are given in the end to illustrate the performance of 
the new subdivision scheme. 
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摘  要: 提出了四边形网格的三分细分模式.对于正则和非正则四边形网格,分别采用不同的细分模板获得新的

细分顶点.从双三次B样条中推导出正则四边形网格的三分细分模板,极限曲面C2连续;对细分矩阵进行傅里叶变换,
推导出非正则四边形网格的三分细分模板,极限曲面C1连续.提出的三分细分模式可以解决任意拓扑四边形网格的

曲面细分问题.与其他细分模式相比,具有收敛速度快、适用范围广等优点.最后给出了四边形网格细分的实例. 
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1   Introduction 

Subdivision schemes have been widely used for shape modeling due to their advantages in dealing with meshes 
of arbitrary topologies. Subdivision surfaces have the benefits of both polygons and spline surfaces, and it allows 
the users to generate smooth surfaces through a small set of control vertices. Its ability of integrating continuous 
surface models with discrete representations leads to simple and efficient algorithms. 

Since the introduction of Catmull-Clark subdivision surfaces at the end of the 1970s[1], many subdivision 
schemes have been proposed for various applications. For a quadrilateral mesh, Catmull-Clark subdivision produces 
uniform bi-cubic B-spline surfaces and Doo-Sabin subdivision[2] generates uniform bi-quadratic B-spline surfaces. 
There are a rich family of subdivision schemes available now[3], such as classical schemes and combined 
schemes[4−15]. These methods are widely used in geometric design and computer graphics area for shape design, 
animation, multi-resolution modeling and many other engineering applications. Some extensions to meshes with 
arbitrary topologies and shape features make subdivision surfaces a more valuable asset in application. 

For subdivision schemes, the control meshes are continuously refined in each step so that finer meshes are 
generated. The face number and vertex number increase rapidly with the subdivision process. Many researchers 
investigate schemes with an odd number of control points and work out a more general ternary subdivision scheme. 
Hassan[16] proposes a ternary subdivision scheme that can only work on regular meshes. Maillot and Stam[17] give a 
general subdivision scheme that allows any degree of refinements in a single step. However, the properties of the 
limit surfaces are not studied. In this paper, we use different masks to subdivide regular and irregular meshes and 
prove that the limit surfaces generated by the new scheme are C2 and C1 respectively. 

The rest of the paper is organized as follows. In Section 2, we present a new ternary subdivision scheme for 
regular and irregular meshes. Its convergence is proved and the continuity condition of the limit surface is also 
given. In Section 3, the proposed subdivision scheme is compared with other subdivision schemes, and some 
examples are presented. Finally, we draw conclusions in Section 4. 

2   A Ternary Stationary Subdivision Scheme 

A subdivision rule is an algorithm that produces a finer mesh with more details from an original coarse mesh, 
where the connectivity information and the geometric information are applied. Given a simplicial complex 
K=(V,E,F) and a quadrilateral mesh M=(K,Φ), a vertex is called a regular vertex if it is an interior vertex and has the 
degree of 4 or it is a boundary vertex and has the degree of 3 or 2; otherwise, the vertex is called an extraordinary 
vertex. A mesh without extraordinary vertices is called a regular mesh; otherwise, it is called an irregular mesh. In 
this section, we propose subdivision masks for regular and irregular meshes. 

2.1   Subdivision scheme for regular mesh 

Regular mesh can be expressed as the form of tensor product surface by taking mesh vertices as control points. 
Bi-cubic B-spline surface based on quadrilateral mesh with 16 control points can be formulated as 
 S(u,v)=UMGMTV (1) 

where
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control points, U=[u3 u2 u 1],V=[v3 v2 v 1]T are parameter vectors. 
Setting u1=u/3,v1=v/3, the bi-cubic B-spline surface can be expressed as 
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 S(u1,v1)=USMGMTSV (2) 

where . 
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Refining the original control mesh leads to the new F-vertices, E-vertices and V-vertices, but the spline 
surfaces are the same, so we can obtain 
 S(u1,v1)=UMG1MTV=USMGMTSV (3) 

Thus the subdivision control points G1 can be expressed as 

 G1=[M−1SM]G[MTS(MT) −1]=  (4) TGHH 11

where 
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The new control point qij is generated by the control point Pij and its neighbor points multiplied by 
corresponding coefficient Aij. According to Eq.(4), we can get the coefficient Aij and their relationship as follows 
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The new face vertices q11, q13, q14, q31, q33, q34, q41, q43, q44 and the new edge vertices q12, q21, q23, q24, q32, q42 
(Fig.1) have the same coefficients respectively, so we get the subdivision masks for regular mesh as shown in Fig.2. 
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Fig.1  Bi-Cubic spline subdivision scheme of regular mesh 
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(a) Mask for F-vertex        (b) Mask for E-vertex       (c) Mask for V-vertex 

Fig.2  Masks of regular mesh 

The refined control point G1 is deduced from the expression of spline surface, so the limit surface generated by 
this scheme is also bi-cubic B-spline surface. To subdivide the same original mesh, the ternary scheme generates the 
same limit surface as Catmull-Clark subdivision, so the limit surface is also C2 continuous. 
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2.2   Subdivision scheme for irregular mesh 

To define a subdivision scheme for irregular mesh, we need to specify rules for computing positions of the new 
vertices and rules to update the positions of the existing vertices. When new vertices inserted on each edge and face 
are connected by edges, each face is partitioned into 9 quads using the ternary subdivision scheme. The subdivision 
rules that we propose are the following 

Face rule: The F-vertex vf near the vertex v0 is computed by the following formula (Fig.3(a)). 

 )224(
9
1

3210 vvvvv f +++=  (6) 

Edge rule: The E-vertex ve near the vertex v0 can be computed by the linear combination of the vertices 
corresponding to the edge (Fig.3(b)) 
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1

543210 vvvvvvve +++++=  (7) 

Vertex rule: the new position of the V-vertex vv can be determined by the linear combination of the old 
vertex and its 1-neighborhood, which include immediate and diagonal vertices (Fig.3(c)). v
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where n is the valence of the vertex v, α and β are two free parameters which are obtained by considering the 
convergence of the subdivision scheme and the continuous condition of the limit surface. Note that during the 
process of iterative refinements, the valence of each original vertex is invariable. 
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(a) Mask for F-vertex       (b) Mask for E-vertex       (c) Mask for V-vertex 

Fig.3  Masks of irregular mesh 

2.3   Convergence proof and continuity analysis 
The egienstructure of subdivision matrices is necessary for the convergence proof and continuity analysis of 

the limit surface, so we firstly deduce the eigenstructure of the subdivision matrices of the ternary scheme. To 
simplify computation of the eigenvalues, the vertex V(k) at the k-th subdivision level is used n times, and then the 
iteration rule of vertex computation is 
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The subdivision matrix  is transformed into block diagonal matrix ),...,,( )(
1
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matrix and diagonal matrix is the following 
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DFT is used here as an algebraic tool to transform subdivision scheme into a form suitable for the analysis. 
This allows us to formulate simple and numerically sufficient criteria for the convergence of subdivision scheme. 

The matrices S(k) and )(~ kS  are similar ones and have the same eigenvalues, so we can analyze the eigenvalue 
spectrum of the matrix )(~ kS  instead of S(k). The block matrices of the diagonal matrix )(~ kS  are 
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Using Eq.(10) and Eq.(12), we get 
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Setting α=4/9 and β=4/45, we have 2025α2−2520α+4050αβ+736−2160β+2025β2=0, then the eigenvalues of 
 

~ )(
0

kS are 0, 1, 1/45, 1/45, respectively. By (10) and (13), we have 
( ) ( ) ( ) ( ) ( )

0 1 1 (1 )
1 / 2 /

1/ 5 / 5 1/10 2 /15 1/15 /15 2 /15 /10
      .

4 / 9 2 / 9 1/ 9 2 / 9
/ 5 1/ 5 /10 2 /15 /15 1/15 2 /15 1/10

k k i k i i k i k
i l n

i i i i

i i i i

S S S S Sω ω ω ω
α β α β α

ω ω ω ω

ω ω ω ω

− −
−

− − − −

= + + + + +

− −⎛ ⎞
⎜ ⎟+ + + +⎜ ⎟=
⎜ ⎟
⎜ ⎟

+ + + +⎝ ⎠

2  

The eigenvalues of the matix  
~ )(k

iS are λi0=1/90 

1 2 2 3

2 2 2 3

3

1 ,
270 (102 18 18 6(322 72 72 9 9 ))

1 ,
270 (102 18 18 6(322 72 72 9 9 ))
0.

i i i i i i i i

i i i i i i i i

i

λ
ω ω ω ω ω ω ω

λ
ω ω ω ω ω ω ω

λ

=
+ + − + + + +

=
+ + + + + + +

=

4

4

 

Since the matrices S(k) and )(~ kS  are similar ones, the eigenvalues of the matrix S(k) are the same as those of 
the matrix )(~ kS . Similar to the uniform stationary subdivision scheme, the subdivision matrices of different levels 
satisfy S=S(1)=…=S(k), so the eigenvalues of subdivision matrix S satisfy 

λ0=1>λ1=λ2>||λi0||≥||λi1||≥||λi2||≥||λi3||=0, i=1,…,n−1. 
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After getting the eigenstructure, the convergence analysis of the ternary subdivision scheme can be performed 
by analyzing the eigenvalues of the subdivision matrix S. 

Theorem 1. The limit surface of the ternary subdivision scheme is convergent. 
Proof:  The vector of initial data can be decomposed into eigenvector di scaled by weight ai∈R3 called 

eigencoefficient, the vertex V(0) satisfies 
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Therefore, we draw a conclusion that the new ternary stationary subdivision scheme is convergent. □ 
Theorem 2. The subdivision scheme defined by irregular subdivision masks is C1 continuous. 
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lV )(k

tV (k), dil, dit be the l-th and t-th 
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Eq.(17) shows that the limit surfaces is C0 continuous. 

Let , ,  be the l-th, t-th and s-th components of the vertex V)(k
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s-th components of the eigenvector di, respectively. The eigenvalues and eigenvectors satisfy λ1=λ2=1/45 and 
d0=[1,1,…,1]T, then the normal vector of the surface defined by the three points  can be expressed as )(k
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Eq.(18) shows that the limit surfaces is tangent plane continuous. Besides, the map between the control points 
and corresponding projections on the tangent plane is injective. According to the sufficient conditions for surface 
continuity[9], we draw the conclusion that the limit surface is C1 continuous.  □ 

2.4   Boundaries 

The previous sections present subdivision scheme for closed surfaces. However, it is often necessary to model 
surfaces with boundaries. For open meshes, boundary edge fails to produce a new face due to incompleteness of 
mask configuration, so we make use of the symmetry to create new edge vertices around the boundary edge. The 
new edge vertices and the old edge vertices are connected to form quadrilateral faces as shown in Fig.4. The 
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face-generation approach yields a complete quadrilateral mesh for arbitrary open meshes, so the new ternary 
subdivision masks for regular and irregular meshes can be applied again. 

 

 

 

 

 
 
 

(a) The original mesh        (b) The new mesh after adding edge vertices 

Fig.4  Edge vertices on the boundary 

3   Examples and Comparisons 

There are some typical subdivision schemes of quadrilateral meshes: Catmull-Clark and Doo-Sabin subdivision 

that are based on tensor product surface, 4-8 subdivision[11] and 2 -Subdivision[15]. In this section, we will 
compare the convergence speed of our method with the existing typical methods by the eigenvalue analysis. Some 
examples are also given. 

3.1   Convergence speed comparisons 
The block matrices  of Catmull-Clark subdivision scheme at the k-th subdivision level can )1,...,0( )( −= niS k
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The block matrices are transformed into block diagonal matrices, then we get the eigenvalues of the 
subdivision matrix with the relationship 
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The eigenvalues of subdivision matrix for the Catmull-Clark subdivision scheme are bigger than those of the 
ternary subdivision scheme, so the ternary scheme has a faster convergence speed. 

Since Doo-Sabin and Catmull-Clark schemes are based on bisection refinement, they have the same 
convergence speed. Note that Doo-Sabin scheme does not guarantee to generate quadrilateral meshes when the 

original meshes are irregular quadrilateral meshes. The 4-8 subdivision can be viewed as a 2 -subdivision when 

the underlying quadrilateral structure is considered during the refinement process. The 2 -subdivision scheme can 
also be regarded as an extension of the 4-8 subdivision directly operating upon a quadrilateral mesh. Given an 
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original control mesh, two bisection refinement steps of the 4-8 subdivision are equivalent to a face split of the 

Catmull-Clark subdivision, thus the convergence speed of the 4-8 subdivision and 2 -subdivision is slower than 
that of the Catmull-Clark subdivision. In consequence, the convergence speed of the ternary subdivision scheme is 
faster than other typical schemes. 

3.2   Some examples 
We have tested the new ternary subdivision scheme with a lot of different types of geometric models and some 

of them are given here to illustrate the performance. The comparison of Catmull-Clark scheme and the ternary 
scheme is shown in Fig.5. 

 
 
 
 
 
 

(a)                       (b)                       (c)                    (d) 

(a) and (b) Meshes using Catmull-Clark subdivision once and twice respectively 
(c) and (d) Meshes using ternary subdivision once and twice respectively 

Fig.5  Comparison of Catmull-Clark and ternary scheme 

In Fig.6, the original control mesh is regular quadrilateral mesh and the limit surface is C2 using the new 
ternary subdivision scheme. In Fig.7, Fig.8 and Fig.9, the original meshes are irregular meshes and the limit 
surfaces are C1. Figures 6-9 show that the subdivision surfaces generated by the ternary scheme have fair and 
natural looks, especially in Fig.8 and Fig.9 the surfaces look smooth through four times subdivision and there is 
little difference between the third and the fourth subdivisions. 

 
 
 
 
 
 

(a) Initial control mesh         (b) Refined mesh using ternary scheme   (c) Subdivision surface using ternary scheme 

Fig.6 
 
 
 
 
 
 

(a) Initial control mesh         (b) Refined mesh using ternary scheme    (c) Subdivision surface using ternary scheme 

Fig.7 
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(a) The second subdivision               (b) The third subdivision            (c) The fourth subdivision 

Fig.8 
 
 
 
 
 
 
 
 
 
 
 

(a) The second subdivision             (b) The third subdivision              (c) The fourth subdivision 
Fig.9 

4   Conclusions 

We present the ternary stationary subdivision scheme for regular and irregular meshes. The subdivision mask 
for regular mesh is deduced from bi-cubic B-spline surfaces and the subdivision mask for irregular mesh comes 
from face split. The limit surfaces are C2 and C1 continuous respectively. The face number is about nine times than 
that of the coarse mesh after each refinement step. The new ternary subdivision scheme has fast convergence speed 
and woks well for both regular and irregular meshes, so it has wide adaptability. In this paper, we pay less attention 
to creases and object boundaries. More work is needed in those cases to improve the quality of the refined shape and 
sophisticated continuity analysis is also needed, which are our future research. 
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