
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.18, No.6, June 2007, pp.1319−1327 http://www.jos.org.cn
DOI: 10.1360/jos181319 Tel/Fax: +86-10-62562563
© 2007 by Journal of Software. All rights reserved.

背包类问题的并行 O(25n/6)时间-空间-处理机折衷
∗

李肯立 1+, 赵 欢 1, 李仁发 1, 李庆华 2

1(湖南大学 计算机与通信学院,湖南 长沙 410082)
2(华中科技大学 计算机学院,湖北 武汉 430074)

A Parallel Time-Memory-Processor Tradeoff O(25n/6) for Knapsack-like NP-Complete
Problems

LI Ken-Li1+, ZHAO Huan1, LI Ren-Fa1, LI Qing-Hua2

1(School of Computer and Communication, Hu’nan University, Changsha 410082, China)
2(School of Computer, Huazhong University of Science and Technology, Wuhan 430074, China)

+ Corresponding author: Phn: +86-731-8821715, Fax: +86-731-8821715, E-mail: LKL510@263.net

Li KL, Zhao H, Li RF, Li QH. A parallel time-memory-processor tradeoff O(25n/6) for knapsack-like NP-
complete problems. Journal of Software, 2007,18(6):1319−1327. http://www.jos.org.cn/1000-9825/18/1319.htm

Abstract: A general-purpose parallel three-list six-table algorithm that can solve a number of knapsack-like
NP-complete problems is developed in this paper. This kind of problems includes knapsack problem, exact
satisfiability problem, set covering problem, etc. Running on an EREW PRAM model, The proposed parallel
algorithm can find a solution of these problems of size n in O(27n/16) time, with O(213n/48) space and O(2n/8)
processors, resulting in a time-space-processor tradeoff of O(25n/6). The performance analysis and comparisons
show that it is both work and space efficient, and thus is an improved result over the past researches. Since it can
break greater variables knapsack-based cryptosystems and watermark, the new algorithm has some cryptanalytic
significance.
Key words: NP-complete problem; parallel algorithm; time-space-processor tradeoff; knapsack problem

摘 要: 将串行动态二表算法应用于并行三表算法的设计中,提出一种求解背包、精确的可满足性和集覆盖等背
包类 NP 完全问题的并行三表六子表算法.基于 EREW-PRAM 模型,该算法可使用 O(2n/8)的处理机在 O(27n/16)的时
间和 O(213n/48)的空间求解 n维背包类问题,其时间-空间-处理机折衷为 O(25n/6).与现有文献的性能对比分析表明,该
算法极大地提高了并行求解背包类问题的时间-空间-处理机折衷性能.由于该算法能够破解更高维数的背包类公
钥和数字水印系统,其结论在密钥分析领域具有一定的理论和实际意义.
关键词: NP完全问题;并行算法;时间-空间-处理机折衷;背包问题
中图法分类号: TP301 文献标识码: A

∗ Supported by the National Natural Science Foundation of China under Grant No.60603053 (国家自然科学基金); the Key Project of

Ministry of Education of China under Grant No.105128 (国家教育部重点基金)
Received 2005-04-12; Accepted 2006-01-16

 1320 Journal of Software 软件学报 Vol.18, No.6, June 2007

1 Introduction

Every NP-complete problem can be solved in O(2n) time by exhaustive search, but this complexity becomes
prohibitive when n exceeds 60 or 70. Assuming that NP≠P, we cannot hope to find algorithms whose worst-case
complexity is polynomial, but it is both theoretically interesting and practically important to determine whether
substantially faster algorithms exist. In this paper we describe a parallel algorithm which can solve the knapsack
problem. But owing to the work done by Schoreppel and Shamir[1], our proposed algorithm actually can solve a fair
number of NP-complete problems including knapsack, partition, exact satisfiability, set covering, hitting set,
disjoint domination in graphs, etc. Although the proposed algorithm is a versatile algorithm that can solve the above
kind of NP-complete problems, to make this algorithm more easily understood, we only take the knapsack problem
as the representative. As to the details on how our proposed algorithm can be applied to solve other NP-complete
problems in this kind, one can refer to Ref.[1].

Given n positive integers W=(w1,w2,…,wn) and a positive integer M, the knapsack problem is the decision
problem of a binary n-tuple X=(x1,x2,…,xn) that solves the equation

 =M (1) ∑
=

n

i
ii xw

1

This problem was proved to be NP-complete[2] and, unless NP=P, its complexity is exponential in n. Solving
the knapsack problem can be seen as a way to study some large problems in number theory and, because of its
exponential complexity, some public-key cryptosystem are based on it[2−4].

A major improvement in this area was made by Horowitz and Sahni[5], who drastically reduced the time needed
to solve the knapsack problem by conceiving a clear algorithm in O(n2n/2) time and O(2n/2) space. Based on this
algorithm, Schrowppel and Shamir[1] reduced the memory requirements with the two-list four-table algorithm which
needs O(2n/4) memory space to solve the problem in still O(n2n/2) time. They also showed their algorithm can solve
the above knapsack-like NP-complete problems. Using unbalanced four tables, an adaptive algorithm is presented in
Ref.[6]. Although the above algorithm is by far the most efficient algorithm to solve the knapsack-like problems in
sequential, it means nothing for any instances where the size n is great.

With the advent of the parallelism, much effort has been done in order to reduce the computation complexity of
problems in all research areas[7−15], most of which are based on CREW (concurrent read exclusive write) PRAM
(parallel random access machine). Karnin[7] proposed a parallel algorithm that parallelizes the generation routine of
the two-list four-table algorithm. In his algorithm the knapsack problem could be solved with O(2n/6) processors and
O(2n/6) memory cells in O(2n/2) time. Amirazizi and Helman[8] were the first to show that parallelism could
accelerate to solve larger instances of this problem. Their algorithm runs in O(n2αn) time, 0≤α≤1/2, by allowing
O(2(1−α)n/2) processors to concurrently access a list of this same size. Amirazizi and Helman[8] also present a more
feasible Time-Space-Processor (TSP) model for evaluation of the performance of different algorithms for solution
of knapsack-like NP-complete problems. In 1991, Ferreira[9] proposed a brilliant parallel algorithm that solves the
knapsack problem of size n in time T=O(n(2n/2)ε), 0≤ε≤1, when P=O((2n/2)1−ε) processors and S=O(2n/2) are
available. Chang et al.[10] presented another parallel algorithm where the requirement of the sharing memory is
O(2n/2) by using O(2n/8) processors to solve the knapsack problem still in O(2n/2) time. Thereafter, in 1997, based on
Chang et al.’s parallel algorithm, Lou and Chang[11] successfully parallelize the second stage of the two-list
algorithm. Regretfully, it is independently found in Refs.[12,13] that the analysis of the complexity of the Chang et
al.’s algorithm was wrong, which invalidate the results of Lou and Chang[11]. Except pointing out the wrong in
literature[10], we also proposed a CREW-PRAM cost-optimal parallel algorithm[12], and thereafter, a cost-optimal
algorithm without memory conflicts was further presented in Ref.[14].

 李肯立 等:背包类问题的并行 O(25n/6)时间-空间-处理机折衷 1321

However, because the memories required in both of these two cost-optimal parallel algorithms are still O(2n/2),

it makes the available memory cells a bottleneck when using these algorithms to break practical knapsack-based
cryptosystem. When explaining the open problems existed in this kind of NP-complete problems, G. Woeginger
recently concludes that the space is more important than the time[16]. Therefore, to further reduce the required
memory units for the solution of knapsack-like problems is still valuable.

To reach this goal, based on Ferreira’s CREW parallel three-list algorithm[15] and the two-list 2k-table serial
algorithm[17], we propose a parallel three-list six-table algorithm in this paper. The novel properties of the proposed
algorithm are:

(i) This algorithm can solve knapsack-like NP-complete problems in O(27n/16) time, O(213n/48) shared memory
units when O(2n/8) processors are available. The Time-Space-Processor tradeoff of this algorithm is only O(25n/6),
which is considerably better than those of all algorithms published so far.

(ii) It can be performed on an EREW PRAM machine model, and thus is a totally without memory conflicts
algorithm for the knapsack-like problems. Furthermore, the algorithm is completely practical in the sense that it is
easy to program and its overhead is small.

The rest of this paper is organized as follows. Section 2 explains the parallel three-list algorithm, on which the
proposed algorithm is based. The proposed parallel algorithm is described in Section 3. Then, in Section 4, the
performance analysis and comparison follow. Finally, some concluding remarks and some future research directions
in this field are given in Section 5.

2 The Parallel Three-List Algorithm

In 1995, Ferreira presented a parallel three-list algorithm, which is based on a CREW PRAM model[15]. The
number of processor, time complexity, and space requirements in it are O(2βn), O(n2(1−ε/2−β)), O(n2εn/2), 0<ε<1,
0≤β≤1−ε/2, respectively. It is viewed as an important breakthrough in the research of knapsack-like problems, for it
can solve the knapsack-like problems in a way of both work and space effective[15]. Because our algorithm is based
on this algorithm, we introduce it.

Algorithm 1. The Three-list algorithm.
Generation stage
1. Divide W into three parts: W1=(w1,w2,…,w7n/16), W2=(w7n/16+1,w7n/16+2,…,w14n/16), W3=(w14n/16+1,…,wn).
2. Form all possible subset sums of W1, W2, then sort them in a nondecreasing order and store them as

A=[A1,A2,…,
16
7

2
nA] and B=[B1,B2,…,

16
7

2
nB], respectively.

3. Form all possible subset sums of W3, and store them as C=[C1,C2,…,
82
nC].

Search stage
1. For all Cm in C where 1≤m≤2n/8
2. Ci execute the binary search over A+B.
3. If a solution is found: then stop, output the solution; else: output that there is no solution.

The time complexity of this algorithm is O(n×29n/16), and the needed memory unit is O(27n/16)[15]. Based on its
serial algorithm, Ferreira’s parallel algorithm is very direct. It runs on a CREW model, as shown in Fig.1[15]. The
number of processors is P=2n/8. The subset sums in lists A and B which hold 27n/16 subset sums respectively are
stored in the shared memory. And each processor Pi (1≤i≤P), which holds the subset sum Ci, executes a “virtual”
binary search on the list A+B to make sure whether A[j]+B[l]=M−Ci is satisfied, 1≤j,l≤27n/16. The parallel three-list
algorithm consists of the following three main steps[15]:

 1322 Journal of Software 软件学报 Vol.18, No.6, June 2007

Algorithm 2. Parallel three-list algorithm.
for all Pm where 1≤m≤2n/8 do
1. Generation of the three lists A, B and C
2. Sorting of the two lists
3. Binary search over A+B

end
The total time needed in this algorithm is bound by O(n×27n/16), and the space requirements are O(27n/16)[15].

Subset
sums

CpC1 C2 C3

W2W3

W

W1

A[j]+B[l] 1≤j,l≤27n/16

Fig.1 The parallel three-list algorithm (P=2n/8)

3 The Proposed Parallel Algorithm

Although Ferreira’s above algorithm is considered as a main breakthrough for the researches on the knapsack
problem, it still have an obvious shortcoming, for it has a O(n×2n) TSP tradeoff, which is a little greater than that of
the recent parallel algorithms[12,14] by a factor n. To overcome this shortcoming, we redesign the two main stages of
the parallel three-list algorithm. Inspired by the idea used in serial algorithm[17], in the list generation stage, we
introduce six tables to produce two ordered list A and B dynamically. By doing so, we can reduce the space
complexity from O(27n/16) to O(213n/48). While in the list search stage, we replace the matrix search way in Ref.[15]
with the two-list like search algorithm, which is more simple and able to reduce the time needed by a factor O(n) in
the search stage.

In our proposed algorithm, each of the two lists stored in the shared memory has a size of O(27n/16), whose
elements will be dynamically generated one by one, by using only O(213n/48) shared memory units. Now consider the
two stages of the algorithm. For convenience, we first introduce the algorithm used in the search stage.

3.1 The search stage

Now we use the two-list like search to fulfill the list search stage. Suppose the two sorted lists A and B exist
before the following Algorithm 3 executes. Because each processor holds the subset sum element C[m] in its local
memory, 1≤m≤2n/8. We can use the following two-list like search algorithm to make sure that for any C[m],
1≤m≤2n/8, whether there exist A[i] and B[j], 1≤i,j≤27n/16, such that the formula A[i]+B[j]+C[m]=M are satisfied.

Algorithm 3. Parallel two-list like search algorithm.
The subset sums in list A are sorted in an increasing order, while the sums in list B are sorted in a decreasing

order
for all processors Pm where 1≤m≤2n/8 do
1. i=1, j=1.
2. if A[i]+B[j]=M−C[m], then stop: A solution is found, and write the result into the shared memory.
3. if A[i]+B[j]<M–C[m], then i=i+1; else j=j+1.

 李肯立 等:背包类问题的并行 O(25n/6)时间-空间-处理机折衷 1323

4. if i>27n/16 or j>27n/16 then stop: there is no solution.
5. goto step 2.
end
Lemma 1. The time needed to perform Algorithm 3 is at most 2×27n/16.
Proof. The condition that the loop ends shows that once the variables i or j is greater than 27n/16, the algorithm

terminates. While for each computation step, one of the above two variables must increase by 1. So it is obvious that
the maximum of the needed time to perform Algorithm 3 is 2×27n/16. □

3.2 The three-list generation stage

Since each element in list C is stored in the local memory of each processor, and it is easy to produce it. We
only discuss how to produce all elements of lists A and B stored in the shared memory. Note that in the list search
Algorithm 3, each processor accesses the elements of the sorted lists A and B sequentially, and thus there is no need
to store all the possible subset sums of A and B simultaneously in the shared memory—what we need is the ability
to generate them quickly (on-line, upon request) in the sorted order. So if we generate the two ordered lists
dynamically, the needed space will be reduced greatly. To implement this key idea, we explore the thoughts in
Ref.[17] where 2k tables are used to dynamically produce two sorted lists in serial. Here we use six tables T1, T2, T3,
and T4 , T5, T6, to dynamically produce the two sorted lists A and B, where T1 includes all possible subset sums of
knapsack entries W11=(w1,w2,…,w7n/48),…,T3 includes all subset sums of W13=(w14n/48+1,w14n/48+2,…,w21n/48), and T4
includes all sums of W21=(w21n/48+1,w21n/48+2,…,w28n/48),…,T6 includes all subset sums of W23=(w35n/48+1,w35n/48+2,…,
w42n/48). Let e=27n/48, and mark Ti=(ti1,ti2,…,tie), i=1,…,6. At first we introduce how to dynamically produce the two
sorted lists A and B with these six tables in serial by only using O(27n/48) space.
3.2.1 Production of the two lists in sequential

We focus on the procedures to generate list A because the process to generate list B is similar. As shown in
Fig.2, we first sort all sums in T1 in an increasing order, and then use one priority queue Q1. At beginning Q1 stores
all pairs of the first (T1) and all elements t2i. It can be updated by two operations deletion and insertion, which
enables arbitrary insertions and deletions to be done in logarithmic time of the length of the queue, and makes the
pair with the smallest t1i+t2j sum accessible in constant time. The following algorithm is designed to dynamically
produce all sums of T1+T2 in an increasing order.

 T4 Q3: t4i+T5 Q4: S2+T6 T1 Q1: t1i+T2 Q2: S1+T3

Max
heap

Max
heap

Min
heap

Sorted
tableMin

heap
Sorted
table

Increasing
Decreasing

Fig.2 Structure of the six tables to produce the two lists

Algorithm 4. Algorithm for dynamically generating all sums of T1+T2 in an increasing order.
Tables T1=(t11,t12,…,t1e), T2=(t21,t22,…,t2e) are given
(1) sort T1 into an increasing order;

 1324 Journal of Software 软件学报 Vol.18, No.6, June 2007

insert into Q1 all the pairs (first (T1), t2i) for all t2i∈T2;

(2) repeat until Q1 becomes empty.
(t1,t2)←pair with the smallest t1+t2 sum in Q1;
S1←(t1+t2)
if S1 is needed and used for the objectivity of computation, delete (t1,t2) from Q1;

if the successor of t1
1t 1 in T1 is defined, insert (t ,t1

1 2) into Q1;

Lemma 2. If one element in T1+T2 is produced at any time, the required time is O(7n/48); if all 27n/24 elements
are required, the time is correspondingly O(n27n/24).

Proof. According to the theory of heap[17], one time of deletion and insertion on the heap can be performed
with logarithmic time of the size of the heap. Since the heap constructed in Algorithm 4 has a size of 27n/48 and the
combination T1+T2 has 27n/24 elements, it validates the results of Lemma 2. □

Notice that in Algorithm 4, to produce all 27n/24 sums in T1+T2 one by one, only O(27n/48) space is needed. Now
we go a little further to produce all 27n/16 sums in T1+T2+T3 still with O(27n/48) space cells. The procedure to do so is
exactly similar to Algorithm 4. We use another priority queue Q2 which also has a length of O(27n/48). Q2 stores all
pairs of the first (T1+T2) and all elements t3i in T3. It can be updated by deletion and insertion, and it makes the pair
with the smallest (t1i+t2j)+t3l sum accessible in constant time.

Algorithm 5. Algorithm for dynamically generating all sums of (T1+T2)+T3 in an increasing order.
Tables T3=(t31,t32,…,t3e) are given and all pairs in T1+T2 can be obtained by their increasing order dynamically.
(1) insert into Q2 all the pairs (S1,t3l) for all t3l∈T3 where S1 denotes the least sum in Q1;
(2) repeat until Q2 becomes empty.

(S1,t3)←pair with the smallest S1+t3 sum in Q2;
S←(S1+t3);
if S is needed and used for the objectivity of computation, delete (S1,t3) from Q2;

if the successor of S1
1S 1 in T1+T2 is defined, insert (,t1

1S 3) into Q2;

Lemma 3. The required time to produce one sum and all sums in T1+T2+T3 in an increasing order is
respectively O(7n/48) and O(n27n/16) at the condition of the initial heap for queue Q2 having been constructed.

Proof. Note that the number of sums in (T1+T2)+T3 is |T1|×|T2|×|T3|=(27n/48)3=27n/16. Following the proof of
Lemma 2, the conclusions here are obviously correct. □

Therefore, by using Algorithms 4 and 5, we can dynamically obtain all sums in T1+T2+T3 in an increasing order
with only O(27n/48) memory units. To produce all elements dynamically in a decreasing order, the procedure is
almost the same as the above procedure, except that we have to sort the elements in T4 in a decreasing order, and use
two max heaps for the priority queues Q3 and Q4.
3.2.2 Producing the two lists in parallel

Refering to Fig.1, it seems that it is possible for all processors to use the same priority queues to produce all
the needed elements in T1+T2+T3 and T4+T5+T6, and thus O(27n/48) shared memory units are enough for the parallel
case. However, O(27n/48) space cells indeed do not fit the parallel case. When Algorithm 3 starts to perform, at first
all processors Pm need the sum pair A[1] and B[1] to make sure whether A[1]+B[1]=M−C[m], 1≤m≤2n/8. But after
that time, the value C[m] each processor holds may be different from each other. Therefore, to make the search
algorithm perform successfully, we must prepare two queues (heaps) for each processor. As a result, in parallel case,
the shared memory must have more memory units than that needed in sequential case.

By combining the discussions in 3.1 and 3.2.1 into a whole, we get the final parallel three-list six-table
algorithm.

 李肯立 等:背包类问题的并行 O(25n/6)时间-空间-处理机折衷 1325

Algorithm 6. An EREW based parallel three-list six-table algorithm for knapsack-like problems.
A knapsack instance including W=(w1,w2,…,wn) and M is given
for all processors Pm where 1≤m≤2n/8 do

1. Generate list C and six tables T1, T2, T3 and T4, T5, T6, and sort T1 and T4 in parallel.
2. Construct two min heaps for queues Q1m, Q2m, and two max heaps for queues Q3m and Q4m.
3. Perform Algorithm 4.
4. Perform Algorithm 5.
5. Perform two-list like search algorithm (Algorithm 3).

end
Theorem 1. n-variable knapsack-like problems can be solved on EREW model in O(27n/16) time when O(2n/8)

processors and O(213n/48) shared memory units are available.
Proof. With 2n/8 processors, producing list C and four even tables can be finished in n and 4×2n/48 time

respectively, while the two tables T1 and T4 can be generated and sorted in 4×2n/48 time through the parallel merging
generation algorithm in Ref.[18] without any memory conflicts. It will take 4×2n/48 time for each processor to
construct four heaps. Following Lemmas 3, to perform Algorithm 3, each processor need element pair A[i] and B[j].
A[i] comes from heap Q2 and needs 7n/48 time, and finding the updating elements for heaps Q2 (from heaps Q1) will
take another 7n/48 time. Since there are 2×27n/16 elements in lists A and B, the total needed time is

×=

××+×+×+ 167

22
1674848 2

2304
49

48
7222424 nnnn nOnn (2)

Compared with the exponential factors, the low polynomial factor has little impact on the time complexity and
thus is usually omitted in the analysis of the algorithms on knapsack-like problem[7−10,15]. So the time complexity of
the proposed parallel algorithm is O(27n/16). As for space complexity, since there are 2n/8 processors, and each of
them needs 4×27n/48 for the construction of heaps, the total space requirements are O(213n/48). To avoid memory
conflicts, at first, we copy the knapsack variables for each processor. Thereafter, each processor accesses and
updates its own heaps, so it is obvious that all processors have no memory conflicts. □

4 Performance Analysis and Comparison

We adopt the time-space-processor (TSP) tradeoff as the criterion of evaluation of relevant algorithms[8].
Karnin’s parallel algorithm takes O(n2n/2) time to solve the knapsack problem with O(2n/6) processors and O(2n/6)
shared space, resulting in a TSP tradeoff of O(25n/6)[9]. The TSP tradeoff of Ferreira’s parallel three-list algorithm in
Ref.[15] is O(n2n). The parallel algorithm proposed by Amirazizi and Helman[8] runs in O(n2αn) time, 0≤α≤1/2, by
allowing O(2(1−α)n/2) processors to concurrently access a list of the same size, hence the TSP tradeoff of this
algorithm is also O(n2n). Ferreira’s parallel one-list algorithm in Ref.[9] solves the knapsack problem in time
T=O(n(2n/2)ε), 0≤ε≤1, when P=O((2n/2)1−ε) processors and S=O(2n/2) are available. Therefore, it results in an O(n2n)
TSP tradeoff. The TSP tradeoff of Chang et al.’s parallel algorithm[10] is O(29n/8), while the parallel algorithm Lou
and Chang presented bears the same performance as Chang et al.’s algorithm[11−13]. In addition, both of the
algorithms in Refs.[12,14] have O(2n) TSP tradeoff.

In our parallel three-list six-table algorithm, following Theorem 1, we can get a TSP tradeoff of
O(49n2/2304×2n/8×213n/48×27n/16)=O(25n/6). Among all algorithms that can be found in literatures, the TSP tradeoff of
the algorithm proposed by Karnin[7] is the lowest, which is also O(n25n/6). However, it has obvious defects that it
can’t reduce the execution time even in parallel, for it must take O(n2n/2) time to solve the knapsack-like problems.
Although Ferreira’s parallel three-list algorithm is the first algorithm that can solve the knapsack-like problem with

 1326 Journal of Software 软件学报 Vol.18, No.6, June 2007

less than O(2n/2) time when the available hardware is also less than O(2n/2), it does little in reducing the overall
performance tradeoff because of its O(n2n) TSP tradeoff. In spite of the fact of our proposed algorithm is not cost
optimal, it is both work and memory efficient. Moreover, our algorithm is based on EREW-PRAM model, so it can
avoid memory conflicts when different processors access the shared memory.

For the purpose of clarity, the comparisons of the mentioned parallel algorithms for solving the knapsack-like
problems are depicted in Table 1. It is obvious that our parallel algorithm outtakes undoubtedly other parallel
algorithms in the overall performance.

Table 1 Comparisons of the parallel algorithms for solving the knapsack-like problems
Algorithms Model Processor Time Memory TSP tradeoff

1[7] CREW O(2n/6) O(2n/2) O(2n/6) O(25n/6)

2[8] CREW O(2(1−α)n/2) O(2αn) O(2(1−α)n/2) O(2n)
3[15] CREW O(2βn) O(2(1−ε/2−β)n) O(2εn/2) O(2n)
4[9] CREW O(2(1−ε)n/2) O(2εn/2) O(2n/2) O(2n)
5[10] CREW O(2n/8) O(2n/2) O(2n/2) O(29n/8)
6[11] CREW O(2n/8) O(2n/2) O(2n/2) O(29n/8)
7[12] CREW O((2n/4)1−ε) O(2n/4(2n/4)ε) O(2n/2) O(2n)
8[14] EREW O((2n/4)1−ε) O(2n/4(2n/4)ε) O(2n/2) O(2n)
Ours EREW O(2n/8) O(27n/16) O(213n/48) O(25n/6)

Notations: 0≤ε≤1, 0≤α≤1/2, 0≤β≤1−ε/2.

5 Conclusions

Inspired by the ideas in parallel three-list algorithm[15] and serial two-list 2k-table algorithm[17], we propose a
new parallel three-list six-table algorithm for solving the knapsack-like problems. Through dynamically producing
the elements of the two lists with four priority queues and two sorted tables, we dramatically reduce the space
requirements from O(27n/16) in parallel three-list algorithm[15] to O(213n/40). Moreover, the memory conflicts are also
avoided by leaving different memory address segment for different processors, permitting the algorithm to be able
to perform on EREW machine model. Performance comparison on the TSP criterion shows our proposed algorithm
greatly outweighs the parallel algorithms presented by far, and thus it is an improved result over the past researches
on parallel solution of the knapsack-like NP-complete problems. Since it can solve problems that are almost 1.6
times as big as those handled by the previous algorithms, it may have some importance in research of cryptosystem.

However, for NP-complete problems, we know that, unless NP = P, some exponential factor should appear in
parallel solutions, either as the time complexity, the number of processors used or even as the memory
requirements[19]. Therefore, even modern supercomputer can break 100-variable knapsack cryptosystem, but how
about 120-variable or more? Perhaps, the DNA-based parallel computation may be a way to go out[20], so one of our
future work is on how to combine the ideas in designing traditional algorithms and DNA methods to obtain new
DNA algorithms; other possible work may be on how to design distributed algorithms on the grid sources to solve
this kind of hard problems.

References:
[1] Schroeppel R, Shamir A. A T=O(2n/2), S=O(2n/4) algorithm for certain NP-complete problems. SIAM Journal Computing, 1981,

10(3): 456−464.

[2] Chor B, Rivest RL. A knapsack-type public key cryptosystem based on arithmetic in finite fields. IEEE Trans. on Information

Theory, 1988,34(5):901−909.

[3] Laih CS, Lee JY, Harn L, Su YK. Linearly shift knapsack public-key cryptosystem. IEEE Journal Selected Areas Communication,

1989,7(4):534−539.

 李肯立 等:背包类问题的并行 O(25n/6)时间-空间-处理机折衷 1327

[4] Zhang B, Wu HJ, Feng DG, Bao F. Cyptanalysis of a knapsack based two-lock cryptosystem. In: Proc. of the ACNS 2004. LNCS

3089, 2004. 303−309.

[5] Horowitz E, Sahni S. Computing partitions with applications to the knapsack problem. Journal of the ACM, 1974,21(2):277−292.

[6] Li KL, Li QH, Dai GM. An adaptive algorithm for the knapsack problem. Journal of Computer Research and Development, 2004,

12(7):1024−1029 (in Chinese with English abstract).

[7] Karnin ED. A parallel algorithm for the knapsack problem. IEEE Trans. on Computer, 1984,33(5):404−408.

[8] Amirazizi HR, Hellman ME. Time-Memory-Processor trade-offs. IEEE Trans. on Information Theory, 1988,34(3):505−512.

[9] Ferreira AG. A parallel time/hardware tradeoff T⋅H=O(2n/2) for the knapsack problem. IEEE Trans. on Computer, 1991,40(2):

221−225.

[10] Chang HK, Chen JJ, Shyu SJ. A parallel algorithm for the knapsack problem using a generation and searching technique. Parallel

Computing, 1994,20(2):233−243.

[11] Lou DC, Chang CC. A parallel two-list algorithm for the knapsack problem. Parallel Computing, 1997,22(14):1985−1996.

[12] Li KL, Li QH, Jiang SY. An optimal parallel algorithm for the knapsack problem. Journal of Software, 2003,14(5):891−896 (in

Chinese with English abstract). http://www.jos.org.cn/1000-9825/14/891.htm

[13] Aanches CA, Soma NY, Yanasse HH. Comments on parallel algorithms for the knapsack problem. Parallel Computing, 2002,

28(10): 1501−1505.

[14] Li QH, Li KL, Li RF. Optimal parallel algorithm for the knapsack problem without memory conflicts. Journal of Computer Science

and Technology, 2004,19(6):760−768.

[15] Ferreira AG. Work and memory efficient parallel algorithms for the knapsack problem. Int’l Journal of High Speed Computing,

1995,4(7):595−606.

[16] Woeginger GJ. Space and time complexity of exact algorithms: Some open problems. In: Downey R, ed. Proc. of the IWPEC 2004.

LNCS 3162, Berlin, Heidelberg: Springer-Verlag, 2004. 281−290.

[17] Vyscoc J. An O(nlgk⋅2n/2) time and O(k⋅2n/k) space algorithm for certain NP-Complete problem. Theoretical Computer Science, 1987,

51(1,2):221−227.

[18] Akl SG. Optimal parallel merging and sorting without memory conflicts. IEEE Trans. on Computer, 1987,36(11):1367−1369.

[19] Cheng GL. The Design and Analysis of Parallel Algorithms. Beijing: Higher Education Press, 2002. 35−37 (in Chinese).

[20] Chang WL, Guo M, Ho M. Molecular solutions for the subset-sum problem on DNA-based supercomputing. Biosystem, 2004,

73(2):117−130.

附中文参考文献:
 [6] 李肯立,李庆华,戴光明.背包问题的一种自适应算法.计算机研究与发展,2004,12(7):1024−1029.

[12] 李庆华,李肯立,蒋盛益.背包问题的最优并行算法.软件学报,2003,14(5):891−896. http://www.jos.org.cn/1000-9825/14/891.htm

[19] 陈国良.并行算法的设计与分析.北京:高等教育出版社,2002.35−37.

LI Ken-Li was born in 1971. He received
his Ph.D. in Computer Science from HUST
in 2003. He is now an associate professor
at the Hu’nan University and a CCF senior
member. His current research areas are
parallel processing and DNA computer.

 LI Ren-Fa is concurrently a professor and
Ph.D. supervisor at the School of Computer
and Communication, Hu’nan University
and a CCF senior member. His research
areas are network computing and
embedded computing.

ZHAO Huan was born in 1967. She is a
Ph.D. candidate now. Her researches areas
are distributed computing and embedded
computing.

 LI Qing-Hua is concurrently a professor
and Ph.D. supervisor at the School of
Computer Science and Technology, HUST
and a CCF senior member. His research
areas are parallel processing, combinatorial
optimization and grid computing.

	Introduction
	The Parallel Three-List Algorithm
	The Proposed Parallel Algorithm
	The search stage
	The three-list generation stage
	Production of the two lists in sequential
	Producing the two lists in parallel

	Performance Analysis and Comparison
	Conclusions

