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Abstract:  Adaptive random testing (ART) is an enhanced version of random testing (RT). It has been observed 
that the compactness of failure regions is one of the factors that affect the performance of ART. However, this 
relationship has only been verified with rectangular failure regions. This paper further investigates the relationship 
between the compactness of failure regions and the performance of ART by conducting simulation experiments, 
where various regular and irregular failure regions are studied. The experimental results have shown that ART’s 
performance improves as the compactness of failure regions increases. This study has provided further insights into 
the conditions where ART outperforms RT. 
Key words:  software testing; random testing; adaptive random testing; failure pattern 

摘  要: 适应性随机测试是一种增强的随机测试方法.已有的研究发现:失效区域的紧致程度是影响适应性随
机测试性能的几个基本因素之一,并仅在失效区域为长方形的情形下验证了上述猜想.采用仿真实验的方法进
一步研究失效区域的紧致程度与适应性随机测试的性能之间的精确关系.研究了几种基本规则形状的和不规
则形状的失效区域.实验结果表明:适应性随机测试方法的性能随着失效区域的紧致程度的增强而提高.该研究
进一步地揭示了适应性随机测试优于随机测试的基本条件. 
关键词: 软件测试;随机测试;适应性随机测试;失效模式 
中图法分类号: TP311   文献标识码: A 

1   Introduction 

Random Testing (RT)[1] is a widely used software testing method in practice. In this method, testers just 
randomly select test cases to test their programs, without any assumption on the program under test. RT is very 
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simple to perform, and can be used to deliver reliability predictions. However, RT may be inefficient since it does 
not make use of any information about the likely characteristic of the program under test. 

When the failure features of program under test are carefully examined, failure-causing inputs tend to cluster to 
form certain patterns[2−5]. Chan, et al.[6] observed some typical patterns of failure regions within the input domain, 
including the block pattern, the strip pattern, and the point pattern, as illustrated in Fig.1. The sample programs for 
these failure patterns are further provided in [6] and it is pointed out that the block and strip pattern are the most 
common ones. 

 

(a) Block              (b) Strip              (c) Points 

 
 
 
 
 

Fig.1  Failure patterns 

Based on the above observation, Chen, et al.[7] have developed Adaptive Random Testing (ART) to enhance the 
effectiveness of RT. In ART, test cases are randomly selected and evenly spread. Intuitively speaking, a more 
widespread set of random test cases have a better chance to detect a failure when the failure-causing inputs are 
clustered into one or more failure regions[8]. It has been observed that ART can detect the first failure using about 
60% test cases used by RT[7−12]. 

ART can be implemented through different approaches, such as by distance[7,8], by restriction[9], or by 
lattice[11], etc. Some of these approaches have been combined to improve ART’s cost-effectiveness, that is, fewer 
test cases to detect the first failure and less computations[12]. The concept of mirroring[10] has recently been 
introduced to improve the efficiency of some ART implementations. 

A series of simulation experiments have been conducted to identify the fundamental factors that affect the 
fault-detection capabilities of ART [13]. These experiments have observed that ART’s performance depends on the 
failure rates, the number of failure regions, the existence of predominant failure regions, and the compactness of 
failure regions. 

The previous work has preliminarily reported the impact of the compactness of failure regions on the 
performance of ART, where the failure region was set to be rectangular[13]. However, in real-life programs, the 
failure region may be of various shapes. In this study, we further investigate the impact of the compactness of a 
failure region on the performance of ART, where both regular and irregular shapes of failure regions are studied. 
Our experimental results show that there exists a strong relation between the compactness of failure regions and the 
performance of ART. 

The rest of paper is organized as follows: Section 2 describes an implementation of ART; Section 3 discusses 
the underlying experiment design, including the performance measurement, compactness measurement and 
experimental settings; Section 4 reports the experiment result and provides further analysis; Section 5 concludes the 
paper. 

2   Adaptive Random Testing (ART) 

As mentioned above, there are various ways to implement ART. In our study, ART is implemented using FSCS 
(fixed size candidate set) ART algorithm[7]. In this method, two sets of test cases are maintained, namely the 
executed set and the candidate set. ART generates the candidate set using RT strategy, and selects a test case from 
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the candidate set, which is farthest away from all the elements in the executed set. With this approach, test cases in 
ART are both randomly selected and widely spread. The detailed FSCS ART algorithm is shown as follows: 

1) The executed set TS is initially set as empty. RT strategy is employed to generate the first test case ti which 
is then executed and appended to TS. If no failure is detected, then go to Step 2); otherwise the process ends; 

2) RT strategy is employed to generate a candidate set CS={c1,c2,…,cn}. A test case ck (1≤i≤n) is selected from 
the candidate set CS such that , where m is the size of TS, t))),((
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and dist(tj,ci) denotes the distance between two test cases tj and ci
[10]; 

3) The chosen test case ck is tested and then added to the executed set TS. If a failure is detected, the process 
stops; otherwise, Step 2) is repeated until a failure is detected, or the number of test cases in the resulting TS 
exceeds a predefined value. 

3   Design of Simulation Experiment 

In this section, we discuss how to design and conduct the simulation experiments for different shapes of failure 
regions. We take the same performance measure and compactness measure as used in the previous simulation 
experiments[13]. 

3.1   Performance measurement 

There are several common performance measures for test case selection strategies. One of them is F-measure 
which is defined as the number of test cases used to detect the first failure[8]. In this study, we use the ART F-Ratio 
which is defined as Fart/Frt to measure the performance of ART against RT, where Fart and Frt denote the F-measure 
of ART and RT, respectively. In our experiments, Fart is achieved by simulation while Frt is calculated by the 
predefined failure rate r (Frt=1/r). Obviously, the smaller the ART F-Ratio is, the better the performance of ART is. 

3.2   Compactness measurement 

There exist many compactness measurements[14]. The most intuitive one which has been used in Ref.[13] is 
defined as the ratio of the area of a given shape to a circular shape, assuming both shapes have the same perimeters. 

In this study, we use this compactness measurement. For the two-dimensional shapes, the measurement is 

2
4
P

Aπ ,where A and P represent the area and perimeter of a geometric shape, respectively. 

3.3   Settings 

Prior to seeding a failure region in the input domain, we need to determine its compactness, size and location. 
It can be done as follows: 

1) In this study, we focus on some irregular shapes and some two-dimensional regular primitive shapes, 
including square, rectangle, circle, ellipse and isosceles triangle. 

For the regular shapes of failure regions illustrated in Fig.2, their compactness is uniquely decided by the 
corresponding parameter n. For the rectangular case, n is defined as the ratio of the longer edge to the shorter edges 
(n≥1); for ellipses, n is defined as the ratio of the semi-major to the semi-minor (n≥1); for isosceles triangle, n is 
defined as the ratio of the bottom edge to the side edge (0<n<2 since b+b>a). For rectangles and ellipses, we set the 
parameter n with 1, 2, 4, 5, 7, 10, 20, 30, 40 and 50; for isosceles triangles, we set the parameter 1/n with 5/8, 3/4, 
7/8, 1, 2, 4, 5, 7, 10, 20, 30, 40 and 50. These parameter values hereby provide various degrees of compactness. 

For the irregular shapes of failure regions, we enumerate a variety of shapes, which are constructed with 3 to 5 
connected square units. 
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2) In our simulation experiments, the input domain is assumed to be of size d, and the failure rate r is the 

ratio of the size of failure region f to d (that is r=f/d). Our simulation experiments investigate the failure 
rate r of 0.0005, 0.001 and 0.005 (the expected Frt is 2000, 1000, and 200, respectively). 

3) Finally, we randomly choose the location of the failure regions in the input domain. 
To achieve a reliable simulation result, say with the confidence level of 95% and the accuracy of ±5, we need 

to collect a large sample of data, the size of which can be decided by means of the central limit theorem[7]. 
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(a) Rectangle               (b) Ellipse                (c) Isosceles triangle 

Fig.2  Three regular shapes 

4   Result and Analysis 

In this section, we report the impact of the compactness of failure regions on the performance of ART under the 
circumstances that a failure region is assumed to be three kinds of regular shapes and some irregular shapes, and 
provide further analysis across different shapes of failure regions. 

4.1   Rectangle/Square 

This experiment is first reported in Ref.[13]. We briefly describe the result for the sake of completeness. The 
compactness of a failure region can be expressed in terms of the ratio n of length to width. Recall the definition of 
compactness measure in Section 3. For the rectangle illustrated in Fig.2(a), 
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Obviously, compactness is a decreasing function in the domain of n≥1, and has the maximum value when n=1. 
The result of our experiments is reported in Fig.3 (refer to Table 3 for the raw data) which shows that the larger n, 
the larger the value of the ART F-Ratio. ART performs best when n is 1, that is, the rectangle is a square. Based on 
the above compactness analysis and simulation result, we can conclude that when the failure region is a 
rectangle/square, the larger the compactness is, the better the performance of ART is. 
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Fig.3  The impact of n (the ratio of length to width for rectangles) on the performance of ART 
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4.2   Ellipse/Circle 

In this experiment, the compactness of a failure region is expressed in terms of the ratio n of semi-major to 
semi-minor. The perimeter of an ellipse, as illustrated in Fig.2(b), can be calculated using the infinite serial formula. 
In practice, the perimeter p of an ellipse can be approximately calculated using the following formula [15]: 
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decreasing function. Thus, the circle (that is n=1) has the maximum compactness. 
The results of our simulation is reported in Fig.4 (refer to Table 4 for the raw data) which shows that the larger 

n, the larger the value of the ART F-Ratio. Fig.4 also shows that ART performs best when n is 1, or equivalently the 
failure region is a circle. 
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Fig.4  The impact of n (the ratio of semi-major to semi-minor for ellipses) on the performance of ART 

Based on the above compactness analysis and simulation result, we can further conclude that when the failure 
region is a circle/ellipse, the larger the compactness is, the better the performance of ART is. 

4.3   Isosceles triangle/equilateral triangle 

In this experiment, the compactness of an isosceles triangle is expressed in terms of the ratio n of the bottom 
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edge to the side edge. The compactness of an isosceles triangle, as illustrated in Fig.2(c), can be defined as follows. 
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f(x) is a decreasing function and hence compactness is a decreasing function. Thus, compactness has the maximum 
value when x=3(that is n=1, the shape is an equilateral triangle). In other words, an equilateral triangle has the 
maximum compactness among all isosceles triangle shapes. 

The result of our experiments is reported in Fig.5 (refer to Table 5 for the raw data), and shows that: 
1) When n is equal to or larger than 1, the larger n is, the larger the value of the ART F-Ratio is; 
2) When n is smaller than 1, the smaller n is, the larger the value of the ART F-Ratio is. 
For all failure rates considered, ART performs best when the ratio n is 1. It is noted that when n is 1, an 

isosceles triangle is an equilateral triangle. 
Therefore, we can further conclude that when the failure region is an isosceles triangle, the larger the 

compactness of the failure region is, the better the performance of ART is. 
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Fig.5  The impact of n (the ratio of bottom edge to side edge for isosceles triangles) on the performance 

4.4   Irregular shapes 

In this experiment, we have only considered 28 irregular shapes of failure regions, as illustrated in Fig.6. Each 
irregular shape consists of 3 to 5 connected same-size square units. 

The first column in Table 1 indicates the index of each irregular shape, as illustrated in Fig.6. The compactness 

of each failure region shape can be calculated using the compactness measurement 2

4
P

Aπ , described in Section 3.2. 

For the majority of data reported in Table 1 (under the confidence level of 95% and accuracy of ±5 (irregular 
shapes)), at the same failure rate, the performance of ART improves with the increasing of compactness of failure 
regions. For example, for the shapes “5D” and “5I”, the ART F-Ratio is 0.65 and 0.81 when the failure rate is 
0.0005; while the compactness is 0.628 and 0.157, respectively. For failure regions which have the same 
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compactness but different shapes, their ART performances are very similar. 
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Fig.6  Irregular shapes constructed from 3 to 5 connected square units 

Table 1  The impact of compactness on the ART F-Ratio 
Failure rate Index Compactness 

0.0005 0.001 0.005 
5D 0.628 0.65 0.65 0.66 
3A 0.589 0.68 0.70 0.71 
4A 0.503 0.70 0.70 0.71 
4B 0.503 0.67 0.72 0.72 
4C 0.503 0.72 0.67 0.73 
5A 0.436 0.74 0.73 0.77 
5B 0.436 0.68 0.73 0.74 
5C 0.436 0.79 0.68 0.71 
5E 0.436 0.71 0.71 0.71 
5F 0.436 0.70 0.73 0.75 
5G 0.436 0.69 0.73 0.75 
3B 0.377 0.70 0.67 0.72 
4D 0.349 0.74 0.73 0.82 
4E 0.349 0.77 0.75 0.78 
5L 0.321 0.78 0.75 0.81 
5N 0.321 0.77 0.77 0.83 
3C 0.262 0.80 0.79 0.78 
3D 0.262 0.80 0.81 0.77 
4F 0.256 0.78 0.79 0.83 
4H 0.256 0.75 0.76 0.80 
5K 0.245 0.79 0.81 0.80 
5M 0.245 0.79 0.78 0.80 
4G 0.196 0.83 0.80 0.85 
4I 0.196 0.82 0.78 0.82 
5J 0.194 0.77 0.83 0.83 
5H 0.157 0.79 0.84 0.84 
5I 0.157 0.81 0.83 0.86 
5O 0.157 0.83 0.81 0.85 

 

4.5   Statistical analysis of the relationship between the compactness of failure region and performance of ART 
For a specific shape of failure regions, the above experimental results have demonstrated that the improvement 

of performance of ART over RT improves with the increasing of the compactness of the failure region. It is 
interesting to investigate whether this trend still exists when various shapes of failure regions are taken into account. 
We attempt to answer this question by analyzing all experimental data reported above irrespective of the variety of 
failure region shapes. The resulting data are shown in Table 6. 

As illustrated in Fig.7 (refer to Table 6 for the raw data), the performance of ART basically improves as the 
compactness of failure regions increases with a few exceptions. For example, when the failure rate is set as 0.005: 
(a) For a rectangle with its compactness being 0.060 (n=50), the ART F-Ratio is 0.91 (see Table 3); (b) For an 
ellipse with its compactness being 0.071 (n=30), the ART F-Ratio is 1.01 (see Table 4). The compactness of case (b) 
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is larger than case (a), but the performance of ART in case (b) is worse than that in case (a). 
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Fig.7  The impact of the compactness of failure regions on the performance of ART under different failure rates 

As illustrated in Fig.7, under different failure rates, the trend of the performance of ART over compactness 
seems to be a decreasing function. To further evaluate the relationship between the compactness of failure regions 
and the performance of ART, we use the technique of trend analysis[16] to process the experimental data. Given a set 
of data, the best way to discover the trend is to find the line of best fit for the data, and correlation coefficient is the 
most common way of determining how well that line actually correlates with the data. We use the linear function 
ART F-Ratio=α*LOG(100*Compactness)+β to fit this trend, and use the technique of least squares fitting to 
determine the parameters a and b and the correlation coefficient cor according to the following formulas[16] 
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where Mx, My and N is the mean of X coordinates, the mean of Y coordinates and the number of data points, 
respectively. 

Based on the data in Table 6 and the above formulas, parameters α and β, correlation coefficient cor, 
confidence level, Mx and My are computed and reported in Table 2 (between the compactness of failure regions and 
the performance of ART). Similarly, the correlation coefficients for various shapes of failure regions are reported in 
Tables 7~Tables 10 using the data from Tables 3, Tables 4, Tables 5 and Tables 1, respectively. In Tables 2 and 
Tables 7~Tables 10, X corresponds to LOG(100*compactness), Y corresponds to the ART F-Ratio. Generally 
speaking, a value of 1 or −1 means that the data correspond perfectly with the line. Note that when |cor| is greater 
than 0.81 or equivalently confidence is greater than 66%, a strong correlation is said to exist. It is noted that all 
correlation coefficients in Tables 2 and Tables 7~Tables 10 indicate a strong correlation. 

Table 2  The trend analysis of relationship 
Failure rate  

0.0005 0.001 0.005 
α −0.206 −0.218 −0.254
β 1.060 1.076 1.157

Cor −0.914 −0.942 −0.931
Confidence (%) 83.6 88.8 86.8

Mx 1.409 1.409 1.409
My 0.770 0.769 0.799

X=LOG(100*Compactness); Y=ART F-Ratio; N=61 

Since α, representing the slope of the correlated line and indicating the trend, is negative for all failure rates, 
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and LOG(100*compactness) is an increasing function over compactness, we can draw the conclusion that the ART 
F-Ratio will decrease with the increasing of compactness of failure regions. In other words, the performance of ART 
will improve as the compactness of failure regions increases. 

5   Conclusion 

We have reported a simulation study of the impact of the compactness of failure regions on the performance of 
ART. The experimental result shows that, the larger the compactness of failure regions, the better the performance 
of ART, for the cases of square, rectangle, circle, ellipse, isosceles triangle, equilateral triangle and some irregular 
failure regions. Using the regression analysis technique, we further analyzed the relationship between the 
compactness of failure regions and the performance of ART, regardless of the shapes of failure regions. The result 
shows that there exists a strong relation between the compactness of failure regions and the performance of ART. 

In this simulation study, we have to assume that the failure region is of certain shapes. The validity of our 
simulation results is obviously restricted to those shapes studied. It should be noted that in real-life applications, 
failure regions may be other than those regular or irregular shapes discussed in this paper. 

This study provides further insights into the conditions where ART outperforms RT. Future work may include 
an experimental analysis of the geometry of failure regions for real-life programs and an experimental analysis of 
the impact of the compactness of failure regions on the performance of ART. 
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Appendix I: Experimental Data 

Table 3  The impact of compactness and failure rate on the ART F-Ratio with the confidence level of 95% and 
accuracy of ±5 where n is the ratio of length to width of a rectangle/square 

Failure rate 
n Compactness 

0.0005 0.001 0.005 
1 0.785 0.64 0.65 0.68 
2 0.698 0.72 0.68 0.67 
4 0.503 0.75 0.71 0.72 
5 0.436 0.74 0.74 0.71 
7 0.344 0.77 0.77 0.82 
10 0.260 0.83 0.76 0.80 
20 0.142 0.88 0.84 0.87 
30 0.098 0.90 0.91 0.90 
40 0.075 0.89 0.89 0.93 
50 0.060 0.91 0.89 0.91 

Table 4  The impact of compactness and failure rate on the ART F-Ratio with the confidence level of 95% and 
accuracy of ±5 where n is the ratio of semi-major to semi-minor of an ellipse/circle 

Failure rate n Compactness 
0.0005 0.001 0.005 

1 1.000 0.61 0.62 0.64 
2 0.840 0.65 0.65 0.68 
4 0.529 0.74 0.73 0.78 
5 0.437 0.74 0.76 0.77 
7 0.320 0.79 0.77 0.85 
10 0.225 0.74 0.81 0.88 
20 0.110 0.89 0.88 0.90 
30 0.071 0.90 0.93 1.01 
40 0.053 0.94 0.94 1.03 
50 0.041 0.91 0.96 1.10 

Table 5  The impact of compactness and failure rate on the ART F-Ratio with the confidence level of 95% and 
accuracy of ±5 where n is the ratio of bottom edge to side edge of an isosceles triangle/equilateral triangle 

Failure rate 1/n Compactness 
0.0005 0.001 0.005

0.625 0.465 0.66 0.68 0.69 
0.75 0.562 0.69 0.63 0.70 
0.875 0.597 0.67 0.69 0.70 
1 0.605 0.65 0.67 0.68 
2 0.487 0.66 0.68 0.68 
4 0.308 0.76 0.72 0.73 
5 0.258 0.76 0.78 0.77 
7 0.195 0.80 0.81 0.79 
10 0.142 0.79 0.78 0.83 
20 0.075 0.87 0.85 0.88 
30 0.051 0.88 0.88 0.95 
40 0.038 0.88 0.90 0.94 
50 0.031 0.89 0.91 0.99 
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Table 6  The unified impact of the compactness on the performance of ART 

across the various failure region shapes 
Failure rate LOG(100*Compactness)

0.0005 0.001 0.005 
0.488 0.89 0.91 0.99 
0.583 0.88 0.90 0.94 
0.618 0.91 0.96 1.10 
0.705 0.88 0.88 0.95 
0.721 0.94 0.94 1.03 
0.781 0.91 0.89 0.91 
0.853 0.90 0.93 1.01 
0.874 0.87 0.85 0.88 
0.874 0.89 0.89 0.93 
0.992 0.90 0.91 0.90 
1.039 0.89 0.88 0.90 
1.153 0.79 0.78 0.83 
1.154 0.88 0.84 0.87 
1.196 0.79 0.84 0.84 
1.196 0.81 0.83 0.86 
1.196 0.83 0.81 0.85 
1.288 0.77 0.83 0.83 
1.290 0.80 0.81 0.79 
1.292 0.83 0.80 0.85 
1.292 0.82 0.78 0.82 
1.352 0.74 0.81 0.88 
1.389 0.79 0.81 0.80 
1.389 0.79 0.78 0.80 
1.408 0.78 0.79 0.83 
1.408 0.75 0.76 0.80 
1.412 0.76 0.78 0.77 
1.414 0.83 0.76 0.80 
1.418 0.80 0.79 0.78 
1.418 0.80 0.81 0.77 
1.488 0.76 0.72 0.73 
1.505 0.79 0.77 0.85 
1.507 0.78 0.75 0.81 
1.507 0.77 0.77 0.83 
1.536 0.77 0.77 0.82 
1.543 0.74 0.73 0.82 
1.543 0.77 0.75 0.78 
1.576 0.70 0.67 0.72 
1.640 0.74 0.73 0.77 
1.640 0.68 0.73 0.74 
1.640 0.79 0.68 0.71 
1.640 0.71 0.71 0.71 
1.640 0.70 0.73 0.75 
1.640 0.69 0.73 0.75 
1.640 0.74 0.74 0.71 
1.641 0.74 0.76 0.77 
1.668 0.66 0.68 0.69 
1.687 0.66 0.68 0.68 
1.701 0.70 0.70 0.71 
1.701 0.67 0.72 0.72 
1.701 0.72 0.67 0.73 
1.701 0.75 0.71 0.72 
1.723 0.74 0.73 0.78 
1.750 0.69 0.63 0.70 
1.770 0.68 0.70 0.71 
1.776 0.67 0.69 0.70 
1.781 0.65 0.67 0.68 
1.798 0.65 0.65 0.66 
1.844 0.72 0.68 0.67 
1.895 0.64 0.65 0.68 
1.924 0.65 0.65 0.68 
2.000 0.61 0.62 0.64 
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 Table 7  The trend analysis of relationship             Table 8  The trend analysis of relationship 

between the compactness of rectangular                   between the compactness of ellipse 
failure regions and the performance                      failure regions and the performance 

of ART (based on Table 3)                             of ART (based on Table 4) 
Failure rate  Failure rate  

0.0005 0.001 0.005  
 

0.0005 0.001 0.005 
α −0.216 −0.223 −0.237  α −0.219 −0.237 −0.296 
β 1.102 1.092 1.129  β 1.084 1.122 1.260 

Cor −0.957 −0.976 −0.966  Cor −0.957 −0.990 −0.983 
Confidence (%) 91.6 95.3 93.3  Confidence (%) 92.1 98.0 96.7 

Mx 1.383 1.383 1.383  Mx 1.338 1.338 1.338 
My 0.803 0.784 0.801  My 0.791 0.805 0.864 

X=LOG(100*Compactness); Y=ART F-Ratio; N=10  X=LOG(100*Compactness); Y=ART F-Ratio; N=10 
 

Table 9  The trend analysis of relationship               Table 10  The trend analysis of relationship 
between the compactness of isosceles triangle                  between the compactness of irregular 

failure regions and the performance                       failure regions and the performance 
of ART (based on Table 5)                              of ART (based on Table 1) 

Failure rate  Failure rate  
0.0005 0.001 0.005  

 
0.0005 0.001 0.005 

α −0.189 −0.197 −0.234  α −0.253 −0.269 −0.269 
β 1.010 1.020 1.095  β 1.132 1.156 1.181 

Cor −0.966 −0.971 −0.991  Cor −0.737 −0.825 −0.796 
Confidence (%) 93.3 94.2 98.3  Confidence (%) 85.8 90.8 89.2 

Mx 1.281 1.281 1.281  Mx 1.503 1.503 1.503 
My 0.766 0.768 0.795  My 0.752 0.752 0.777 

X=LOG(100*Compactness); Y=ART F-Ratio; N=13  X=LOG(100*Compactness); Y=ART F-Ratio; N=28 
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