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Abstract:  J.A.Solinas suggested an optimal signed binary representation for pairs of integers, which is called a 
Joint Sparse Form (JSF). JSF is at most one bit longer than the binary expansion of the larger of the two integers, 
and the average joint Hamming density among Joint Sparse Form representations is 1/2. This paper extends the 
Joint Sparse Form by using a window method, namely a new representations, for pairs of integers, which is called 
Width-3 Joint Sparse Form (JSF3). The representation is at most one bit longer than the binary expansion of the 
larger of the two integers, and the average joint Hamming density is 19/52. So, computing the form of uP+vQ by 
using JSF3 is almost 9% faster than that by using JSF. 
Key words:  elliptic curve cryptosystem; ECDSA; JSF; width-3 joint sparse form (JSF3); AJHD 

摘  要: J.A.Solinas 给出了整数对的最优带符号二进制表示,称做联合稀疏表示(JSF).JSF 表示长度至多是最
大整数的二进制长度加一,其平均汉明密度为 1/2.利用窗口方法扩展了联合稀疏表示,给出了整数对的一种新表
示方法:3-宽度联合稀疏表示(JSF3).该表示长度至多是最大整数的二进制长度加一,平均汉明密度为 19/52.因此,
利用 JSF3计算 uP+vQ比用 JSF大约提高 9%的效率. 
关键词: 椭圆曲线密码;ECDSA;JSF;3-宽度联合稀疏表示(JSF3);AJHD 
中图法分类号: TP309   文献标识码: A 

1   Introduction 

Known to all, the design of the Public Key Cryptosystem mostly depends on the particular algebra 
construction. The basic public-key operation in a finite field GF(q) is to compute ga for a given element g∈GF(q) 
and a positive integer a. This is typically accomplished by the binary method, based on the binary expansion of a. 
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The method requires approximately l/2 general multiplications and approximately l squarings (on average) 
(l= ).  q2log

More generally, it is commonly needed to evaluate expressions of the form gahb. In particular, most common 
digital signatures (RSA, ECDSA) are verified by evaluating an expression of the above. This is typically 
accomplished by the Straus’ Methods[1] (also called Squaring-Multiple Method), presented by Shamir in 1985. The 
method requires proximately l general multiplications and proximately l squarings (on average). After then, 
numerous methods for speeding up scalar multiplication have been discussed in the literature; for a survey, see 
Ref.[2]. 

While on general Elliptic Curve E(GF(q)), P=(x,y)∈E(GF(q)), then −P=(x,−y). Thus point subtraction is as 
efficient as addition. This motivates the use of a signed binary expansion (allowing coefficients 0 and ±1). A 
particularly useful signed digit representation is the non-adjacent form (NAF)[3]. By using a window method, one 
processes some other signed digit representation, called the width-w nonadjacent form (NAFw)[2−4]. (when w=2, 
NAFw is equivalent to NAF). There is a simple and efficient algorithm for presenting NAFw of any integer. When 
Computing kP, the method requires approximately l/(w+1) general point addition and l double. 

Furthermore, many Elliptic Curve Cryptosystems require the computation of the form uP+vQ, where P,Q are 
points on an elliptic curve, and u,v are integers, such as verification schemes of ECDSA. In the following, we will 
call this form as multi scalar multiplications. So the efficiency of implementation depends mostly on the efficiency 
of evaluation of the multi scalar multiplications. Thus, fast multi scalar multiplication is essential for Elliptic Curve 
Cryptosystems. There are lots of research papers on the problem of speeding up uP+vQ in recent years[2−7]. 

For computing the form uP+vQ, J.A.Solinas suggested an optimal signed binary representation for pairs of 
integers, called Joint Sparse Form (JSF). JSF is at most one bit longer than the binary expansion of the larger of the 
two integers, and the average joint Hamming density among Joint Sparse Form representations is 1/2. This paper 
presents the concept of form representation of integers, brings forward Width-3 Joint Sparse Form (JSF3), extends 
the JSF method by using some other signed digit representation of integers, and also proves that the average joint 
Hamming density(AJHD) is 19/52. So, this improvement can speed up the computation of the form uP+vQ by up to 
9%, while compared to computation by using JSF. 

The paper is organized as follows: Section 2 gives some preparation knowledge on the representation of 
integers; Section 3 first gives the definition of JSF3 for pairs of positive integers u1,u2, then proves its unique 
existence, and presents an algorithm for producing it, and finally shows AJHD of that is 19/52 via stochastic 
process; Section 4 gives the application of the technique and discusses the avenues for further work. 

2   Preparation Knowledge 

A given nonegative integer n has a common binary expansion n=(al,…,a1,a0)= ,a∑
=

l

i

i
ia

0
2 i=0,1. It has another 

binary expansion n=(bt,…,b1,b0)=  b∑
=

t

i

i
ib

0
2 , i∈{0,±1,±3,…,±(2w−1−1)}, w>0. We call it the width-w generalized 

(binary) expansion form of a (GFw). Obviously, there are many such expansions. We say that GFw is reduced if the 
expansion has the property that the product of any w consecutive terms is nonegative. More, the reduced GFw is 
width-w non adjacent form (NAFw) if the expansion has the property that there is at most a nonzero term of any w 
consecutive terms. We know, every integer has a unique NAFw

[3]. There is also a simple and efficient algorithm for 
computing the NAFw of a given integer. The NAFw of a positive integer is at most one bit longer than its binary 
expansion, and the NAFw has the minimal Hamming weight among GFws of n. Namely, the average Hamming 
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density among NAFw is l/(w+1)[3]. 

Definition 1. A width-3 generalized expansion of n is half sparse form (HSF3) if it satisfies the following 
conditions: 

1. Of any four consecutive terms, at least two are zero; 
2. The product of any adjacent terms equals to 0, 3, 9. 

Let n be a positive integer, then the notation “n mods 8” indicates that the modular reduction 8 is to return the 
smallest residue in absolute value. Correspondingly for Width-3 generalized expansions of u, u=(al,…,a1,a0), 
obviously, a0=0 if n is an even number; and if n is an odd number, then a0∈{n mods 8, (n+4) mods 8, −(n mods 8), 
−((n+4) mods 8)}. So, we may call a0 

1. Fetching-Original-Value of n (FOV(n)), if a0=n mods 8; 
2. Fetching-Anti-Value of n (FAV(n)), if a0=(n+4) mods 8; 
3. Fetching-Sign-Value of n (FSV(n)), if a0=−(n mods 8); 
4. Fetching-Number-Value of n (FNV(n)), if a0=−((n+4) mods 8). 

Lemma 1. For HSF3 for n, n=(al,…,a1,a0), we can obtain that: 
1. a0 only equals to FOV(n), FAV(n), if n=±1, ±3 mod 16; 
2. a0 may equal to FOV(n), FAV(n), FSV(n), if n=±5 mod 16; 
3. a0 may fetch FOV(n), FAV(n), FSV(n), FNV(n), if n=±7 mod 16. 

For any four consecutive terms (aj+3,aj+2,aj+1,aj), we use the sign of “0” as the value that is certain to be zero, 
and use the sign of “*” as the value that is certain to be nonzero, and use the sign of “?” as the value that is not 
certain. The pattern denoted by the signs of “0”, “*”, “?” is called pattern of aj. It is easy to follow that if the 
expansion for n is HSF, when aj fetches FOV, FAV, FSV, FNV, then its pattern corresponds to the form of 
(?,0,0,*),(0,*,0,*),(0,0,*,*),(0,0,*,*). 

3   JSF3 for Pairs of Integers 

We call the joint width-3 generalized expansions for integers n0, n1 the width 3-joint generalized expansion 
form of n0, n1 (JGF3). Furthermore, we call it the reduced width-3 generalized expansion form of n0, n1 (JRF3) if 
both are reduced. Analogically, we call it the joint NAF3 (JNF3). The number of the nonzero columns of JGF3 is 
called the joint Hamming weight (JHW) and the ratio of JHW to its length is its average joint Hamming density 
(AJHD), where n0, n1 run over l-bit integers of N. It isn't difficult to see that JHW of JNF3 is quite smaller among all 
JGF3s, but it is not the smallest. Thereinafter, we give the expansion that is the smallest among JGF3s, whose AJHD 
is 19/52, while that of JNF3 is 7/16. 

Definition 2. The joint width-3 generalized expansion for integers n0, n1, 
n0=(u0,m−1,...,u0,1,u0,0), 
n1=(u1,m−1,...,u1,1,u1,0). 

is called Width-3 Joint Sparse Form (JSF3(n0,n1)), shortly noted by JSF3, if the expansion satisfies the following 
conditions: 

1. JSF3-1: Of any four consecutive columns, at least two are zeros; 
2. JSF3-2: For every row, the product of the adjacent terms is 0, 3, 9; 
3. JSF3-3: There are five pieces of status for interconnect of two rows: 

a) If there exists i∈{0,1} which satisfies ui,jui,j+1=3,9, i.e. ui,j≠0, ui,j+1≠0, then u1−i,j=0, u1−i,j+1≠0. 
b) If u0,j, u1,j are not both zero, then u0,j+2=0, u1,j+2=0, or u0,j+2≠0, u1,j+2≠0. Furthermore, if u0,j−2, u0,j−1, 

u1,j−2, u1,j−1 are not all zero, then u0,j+2=0, u1,j+2=0. 

  



 张亚娟 等:整数对的低重量表示 JSF3 2007 

 
c) If u0,j≠0, u0,j+2≠0, u1,j≠0, u1,j+2≠0, then there exists i∈{0,1} which satisfies ui,jui,j+2>0, ui,j+2=±3 and 

u1−i,ju1−i,j+2>0, u1−i,j+2=±1, or u1−i,ju1−i,j+2<0, ui,j+2=±3. 
d) If u0,j−2, u0,j−1u1,j−2u1,j−1 are all zero and u0,j≠0, u1,j≠0, then u0,j+3u1,j+4=u0,j+4u1,j+3=0. 
e) If there exists i∈{0,1} which satisfies ui,j≠0, ui,j+1=±3, then u0,j+4=0, u1,j+4=0, or u0,j+4≠0, u1,j+4≠0. 

Obviously, each row expansion of JSF3 is HSF3 of an integer. 

3.1   Uniqueness of JSF3 for pairs of integers 

Theorem 1. A pair of positive integers has at most one JSF3. 
Proof:  Suppose, on the contrary, that there are two distinct JSF3: 

n0=(u0,m−1,…,u0,1,u0,0)=(w0,n−1,…,w0,1,w0,0), 
n1=(u1,m−1,…,u1,1,u1,0)=(w1,n−1,…,w1,1,w1,0). 

Since these representations are different, then ui,j≠wi,j for some i,j. Let g be the minimal value of j for which the 
two forms disagree. For i=0,1, set ki=(ui,m−1,...,ui,g+1,ui,g)=(wi,n−1,…,wi,g+1,wi,g). Since the expansions disagree at j=g, 
we may assume that u0,g≠w0,g by exchanging the roles of n0, n1 if necessary. It follows that k0 is odd, for otherwise 
we would have u0,g=w0,g=0. Therefore u0,g, w0,g must have values ±1, ±3. Then it follows from Definition 2 that 

(u0,g+3,u0,g+2,u0,g+1,u0,g)=(?,0,0,*),(0,*,0,*),(0,0,*,*), 
(w0,g+3,w0,g+2,w0,g+1,w0,g)=(?,0,0,*),(0,*,0,*),(0,0,*,*), 

and when u0,g, w0,g, fetch FOV, FAV, FSV, FNV, u1,g, w1,g also correspond to only fetching FOV, FAV, FSV, FNV if 
k0, k1 are both odd. 

We can prove that the assumption is not correct by analyzing the four cases of u0,g, w0,g. Because the space is 
limited, the details are omitted. 

3.2   The existence of JSF3 for pairs of integers 

The most straightforward way to prove the existence of JSF3 for every pair of positive integers n0, n1 is to 
present an algorithm for producing it. 

Algorithm 1. JSF3. 
Input: Nonnegative integers n0,n1, not both zero. 
Output: JSF3 for integers n0, n1. 
n0=(u0,m−1,…,u0,1,u0,0) 
n1=(u1,m−1,…,u1,1,u1,0),ui,j∈{0,±1,±3}, i=0,1, 0≤j≤m. 
1. Set k0←n0, k1←n1; 
2. Set j←0; 
3. Set u0,−2←0, u0,−1←0, u1,−2←0, u1,−1←0; 
4. While k0>0 or k1>0 do 

For i from 0 to 1 do 
If ki is even, then u←0; 
Else 

u←ki mods 8 
If ki≡±1,±3 mod 16 then 

If k1−i≡4 mod 8 then u←(u+4) mods 8 
If k1−i≡±5,±7 mod 16 and ki≡±13,±15 mod 32 and 
u0,j−2=u0,j−1=u1,j−2=u1,j−1=0 then u←(u+4) mods 8 
EndIf 
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Elseif ki≡±5 mod 16 then 

If k1−i≡4 mod 8 then u←(u+4) mods 8 
If k1−i≡±2 mod 8 then u←−u 
If k1−i≡±13,±15 mod 32 and u0,j−2=u0,j−1=u1,j−2=u1,j−1=0 then 
u←(u+4) mods 8 
Endif 

               Elseif ki≡±7 mod 16 then 
If k1−i≡4 mod 8 then u←(u+4) mods 8 
If k1−i≡±2 mod 8 then 

                   a0←((k0>>3)+(k0>>4)) mod 2 
a1←((k1>>3)+(k1>>4)) mod 2 
If a0=a1 then u←−u 
else u←−((u+4) mods 8) 
Endif 

Endif 
If k1−i≡±13,±15 mod 32 and u0,j−2=u0,j−1=u1,j−2=u1,j−1=0 then 
u←(u+4) mods 8 

                 Endif 
               Endif 
             Endif  

Set ui,j←u; 
Next i; 

Set k0←(k0−u0,j)/2, k1←(k1−u1,j)/2; 
Set j←j+1; 
EndWhile 

In order to prove the desired properties of JSF3, it is necessary to generalize Algorithm 1 by allowing inputs 
JRF3 for a pair of e0, e1. 

Algorithm 2. JSF3. 
Input: JRF3 for integers e0,e1, not both zero. 

e0=(e0,m−1,…,e0,1,e0,0), 
e1=(e1,m−1,…,1,e1,0). ei,j∈{0,±1,±3}, i=0,1, 0≤j≤m. 

Output: JSF3 for e0, e1 
1. Set j←0; 
2. Set d0←0, d1←0; 
3. Set u0,−2←0, u0,−1←0, u1,−2←0, u1,−1←0; 
4. Set a0←e0,0, b0←e0,1, x0←e0,2, y0←e0,3, z0←e0,4; 
5. Set a1←e1,0, b1←e1,1, x1←e1,2, y1←e1,3, z1←e1,4; 
6. Set k0←a0+2b0+4x0+8y0+16z0; 
7. Set k1←a1+2b1+4x1+8y1+16z1; 
8. While k0>0 or k1>0 do 

For i from 0 to 1 do 
If ki is even then u←0 
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Else SIMILAR TO Algorithm 1 
Set ui,j←u 
Set βi,j←(ui,j−2,ui,j−1,di,ei,j,ei,j+1,ei,j+2,ei,j+3,ei,j+4) 

Next i 
Set Sj←(β0,j,β1,j) 
Set d0←(d0+a0−u0,j)/2, d1←(d1+a1−u1,j)/2 
Set a0←b0, b0←x0, x0←y0, y0←z0, z0←e0,j+5 

Set a1←b1, b1←x1, x1←y1, y1←z1, z1←e1,j+5 

Set j←j+1 (if j>m, let ei,j=0) 
Set k0←d0+a0+2b0+4x0+8y0+16z0 

Set k1←d1+a1+2b1+4x1+8y1+16z1 

EndWhile 
It is easy to check that, in the special case in which the ei,j’s are “ordinary” unsigned bits, Algorithm 2 is 

equivalent to Algorithm 1. So the correctness of the Algorithm 2 insures that of the Algorithm 1. 
We call the vectors Sj the states of the algorithm, The output vector (u0,j,u1,j) is a function of the state Sj. Thus 

we may describe the action of Algorithm 2 as follows: the jth iteration of the Do loop inputs the state Sj−1, outputs 

(u0,j−1,u1,j−1), and changes the states to Sj, namely, . j
uu

j SS jj  → −−
−

),(
1

1,11,0

Let τi,j=di+ei,j+2ei,j+1+4ei,j+2+8ei,j+3+16ei,j+4. We next enumerate the possible values for the state and all the 
states are divided into the following 24 cases of the difference of Sj (see Tables 1 and 2). 

Table 1  State-Table 

Sj β0,j β1,j Form-of-Fetch-Value
B0,0 t0,j≡0 mod 4 t1,j≡0 mod 4 (0,0) 
B0,1 t0,j≡4 mod 8 t1,j≡1 mod 2 (0,FAV) 
B0,2 t0,j≡0 mod 8 t1,j≡1 mod 2 (0,FOV) 
B0,3 t0,j≡±2 mod 8 t1,j≡±1, ±3 mod 16 (0,FOV) 
B0,4 t0,j≡±2 mod 8 t1,j≡±5 mod 16 (0,FSV) 
B0,5 t0,j≡±2,±6 mod 32 t1,j≡±7 mod 32 (0,FSV) 
B0,6 t0,j≡±2,±6 mod 32 t1,j≡±9 mod 32 (0,FNV) 
B0,7 t0,j≡±10,±14 mod 32 t1,j≡±7 mod 32 (0,FNV) 
B0,8 t0,j≡±10,±14 mod 32 t1,j≡±9 mod 32 (0,FSV) 
B1,0 t0,j≡0 mod 2 t1,j≡0 mod 2 (0,0)(*1) 
B1,1 t0,j≡1 mod 2 t1,j≡4 mod 8 (FAV,0) 
B1,2 t0,j≡1 mod 2 t1,j≡0 mod 8 (FOV,0) 
B1,3 t0,j≡±1,±3 mod 16 t1,j≡±2 mod 8 (FOV,0) 
B1,4 t0,j≡±5 mod 16 t1,j≡±2 mod 8 (FSV,0) 
B1,5 t0,j≡±7 mod 32 t1,j≡±2,±6 mod 32 (FSV,0) 
B1,6 t0,j≡±9 mod 32 t1,j≡±2,±6 mod 32 (FNV,0) 
B1,7 t0,j≡±7 mod 32 t1,j≡±10,±14 mod 32 (FNV,0) 
B1,8 t0,j≡±9 mod 32 t1,j≡±10,±14 mod 32 (FSV,0) 
B2,0 t0,j≡1 mod 2 t1,j≡1 mod 2 (FOV,FOV)(*2) 
B2,1 t0,j≡±13,±15 mod 32 t1,j≡±5,±7 mod 16 (FAV,FAV)(*3) 
B2,2 t0,j≡±5,±7 mod 16 t1,j≡±13,±15 mod 32 (FAV,FAV)(*3) 
B2,3 t0,j≡±1,±3 mod 32 t1,j≡±1 mod 2 (FOV,FOV)(*3) 
B2,4 t0,j≡±13,±15 mod 32 t1,j≡±1,±3 mod 16 (FOV,FOV)(*3) 
B2,5 t0,j≡±5,±7 mod 16 t1,j≠±13,±15 mod 32 (FOV,FOV)(*3) 

 
 
 
 

  



 2010 Journal of Software 软件学报 Vol.17, No.9, September 2006 
  

 
Table 2  State-Following-Table 

Sj u0,j u1,j Sj+1 Sj u0,j u1,j Sj+1
B0,0 0 0 B0,0,B1,0 B1,0 0 0 (*4)
B0,1 0 ±1,±3 B1,0 B1,1 ±1,±3 0 B1,0
B0,2 0 ±1,±3 B0,0 B1,2 ±1,±3 0 B0,0

B0,3 0 ±1,±3 B1,2 B1,3 ±1,±3 0 B0,2
B0,4 0 ±3 B2,0 B1,4 ±3 0 B2,0
B0,5 0 ±1 B2,0 B1,5 ±1 0 B2,0
B0,6 0 ±3 B2,0 B1,6 ±3 0 B2,0
B0,7 0 ±3 B2,0 B1,7 ±3 0 B2,0
B0,8 0 ±1 B2,0 B1,8 ±1 0 B2,0
B2,0 ±1,±3 ±1,±3 B0,0 B2,3 ±1,±3 ±1,±3 B0,0
B2,1 ±1,±3 ±1,±3 B1,0 B2,4 ±1,±3 ±1,±3 B0,0

B2,2 ±1,±3 ±1,±3 B1,0 B2,5 ±1,±3 ±1,±3 B0,0

Note: (*1) means at least one isn’t divisible by 4; (*2) means u0,j−2, u0,j−1, u1,j−2, u1,j−1 are not all zero; (*3) 
means u0,j−2, u0,j−1, u1,j−2, u1,j−1 are all zero, and t1,j≠±13,±15 mod 32 means t1,j=±1,±3 mod 32, or t1,j=±5,±7 mod 16; 
(*4) indicates that any state is a possible successor to state B1,0, excluding B0,0, B1,0. 

It is easy to verify the following by checking all the cases. As a result, we have the following values for Sj+1 for 
each Sj. All the following states are shown in Table 2. Finally, it will be useful to further combine the above 24 
states into six as follows (see Table 3). 

Table 3  Simple-State-Following-Table 

Sj  u0,j=u1,j=0 Sj+1 
C0 B0,0 YES C0,C1 
C1 B1,0 YES C2,C3,C4,C5
C2 B0,1,B1,1,B2,1,B2,2 NO C1 
C3 B0,2,B1,2,B2,0 NO C0 
C4 B0,3,B0,4,B0,5,B0,6,B0,7,B0,8 NO C3 
C4 B1,3,B1,4,B1,5,B1,6,B1,7,B1,8 NO C3 
C5 B2,3,B2,4,B2,5 NO C0 

Theorem 2. Algorithm 1 always outputs the Width-3 Joint Sparse Form for its inputs. 
Proof:  It is straightforward to verify that the expansion produced by the Algorithm 2 is in fact JGF for n0, n1. 

It remains to prove that this expansion satisfies the terms of Definition 2. The process is similar to that. 

3.3   Efficiency of JSF3 for pairs of integers 

Now, Our primary task is to prove that AJHD of JSF3 is 19/52. It is easy to see that GF3 is at most one bit 
longer than the ordinary binary expansion. As a result, JSF3 is at most one bit longer than the binary expansion of 
the larger of the two integers. 

Theorem 3. The average joint Hamming density among Joint 3-Sparse Form representations is 19/52. 
Proof:  Let state space Γ={Gi|i=0,1,…,10,11}, where, 
  G0={Sn∈C0|Sn−1∈C5},   G1={Sn∈C0|Sn−2∈C4}  G2={Sn∈C0|Sn−1∉C5 ,Sn−2∉C4}, 
  G3={Sn∈C1|Sn−1∈C2}   G4={Sn∈C1|Sn−1∈G1},  G5={Sn∈C1|Sn−1∈C2} 
  G6={Sn∈C1|Sn−1∉(G1∪G2∪C2) }, G7={Sn∈C2},   G8={Sn∈C3|Sn−1∈C4}, 
  G9={Sn∈C3|Sn−1∉C4},   G10={Sn∈C4},   G11={Sn∈C5} 

Obviously, a stochastic process {Sn|n≥0} output by Alg.2 takes values in a countable set Γ, and is a homogeneous 
Markov Chain in terms of Γ (see definition in page 252 of Ref.[8]). So, let pi,j denote the transition probabilities 
pi,j(n), where pi,j(n)=P{Sn+1∈Gj|Sn∈Gi}. {pi,j} forms the following transition matrix P (next page). From transition 
matrix P, for any two states Gi,Gj∈Γ, the state Gi is equivalent to Gj, so {Sn|n≥0} is irreducible, and for any Gj, it is 
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nonrecurrent. Therefore, the chain exists stationary distrubution{πj,Gj∈Γ},and limm→∞ j
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jip (m+n)∈Gj|Sm∈Gi},(Gi,Gj∈,m≥0,n≥1). From the equations below, which πj (j=0,1,…,11) satisfies[8], 
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(π0,π1,…,π11,1)=(π0,π1,…,π11)(P,g⊥). 
where g=(1,1,1,1,1,1,1,1,1,1,1,1), and the symbol ⊥ denotes matrix transposition.We get the solution 

(9/130, 4/65, 1/5, 17/260, 3/65, 11/260, 3/20, 17/260, 4/65, 7/65, 4/65, 9/130). 
Let its absorbing probabilities pj(n)=p{Sn∈Gj},j=0,1,…,11, and initial distribution probabilities {pj}=p{S0∈Gj}, 

j=0,1,…,11 of the chain, then the vector of (u0,j,u1,j)=(0,0) is the output by Gj,j=0,1,…,6. So AJHD is given by 
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Therefore Σ=19/52. The AJHD of τ-NJSF is 19/52. 

4   Applications to ECC 

The execution time of ECC schemes such as the ECDSA is typically dominated by point multiplications, In 
ECDSA, there are two types of point multiplications kP, where P is fixed (signature generation), and uP+vQ, where 
P is fixed and Q is not known a priori (signature verification). Using the above algorithm technique, the latter type 
can be sped up by precomputing some data for points,such as 2P, 2Q, 3P, 3Q, P±Q, P±3Q, 3P±Q, 3P±3Q, and 
storing some data for points such as P, Q, 3P, 3Q, P±Q, P±3Q, 3P±Q, 3P±3Q. Adapting the fast Shamir Method by 
using JSF3 yields a technique which requires approximately l doublings and 19l/52 general additions (on average). 
In other words, that sometimes works almost 9% faster than that by using the Joint Sparse Form. 

The front type can also be sped up. The simplest approach is described below. Suppose that the order r of the 
private key space is less than 22l. Let Q=2lP then k=a+b2lQ, thus compute k=aP+bQ, one applies Alg.1 to generate 
JSF3 for integers a, b. This technique of computing it by using JSF3 requires approximately 2l doublings and 19l/52, 
a saving of approximately 33l/52 general additions over the addition-subtraction method, and approximately 7l/52 
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over that by using the Joint Sparse Form. If the Elliptic Curves are particular curves, as Koblitz Curves, there may 
the form with width-3, analogous to JSF3. So, it would be of interest to construct the form which can be applied to 
Koblitz Curves. 
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