
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.17, No.9, September 2006, pp.2004−2012 http://www.jos.org.cn
DOI: 10.1360/jos172004 Tel/Fax: +86-10-62562563
© 2006 by Journal of Software. All rights reserved.

整数对的低重量表示 JSF3
∗

张亚娟+, 祝跃飞, 况百杰

(解放军信息工程大学 信息工程学院 网络工程系,河南 郑州 450002)

Low-Weight JSF3 Representations for Pairs of Integers

ZHANG Ya-Juan+, ZHU Yue-Fei, KUANG Bai-Jie

(Department of Network Engineering, Information Engineering University, Zhengzhou 450002, China)

+ Corresponding author: Phn: +86-371-63530540, E-mail: springzyj@yahoo.com.cn

Zhang YJ, Zhu YF, Kuang BJ. Low-Weight JSF3 representations for pairs of integers. Journal of Software,
2006,17(9):2004−2012. http://www.jos.org.cn/1000-9825/17/2004.htm

Abstract: J.A.Solinas suggested an optimal signed binary representation for pairs of integers, which is called a
Joint Sparse Form (JSF). JSF is at most one bit longer than the binary expansion of the larger of the two integers,
and the average joint Hamming density among Joint Sparse Form representations is 1/2. This paper extends the
Joint Sparse Form by using a window method, namely a new representations, for pairs of integers, which is called
Width-3 Joint Sparse Form (JSF3). The representation is at most one bit longer than the binary expansion of the
larger of the two integers, and the average joint Hamming density is 19/52. So, computing the form of uP+vQ by
using JSF3 is almost 9% faster than that by using JSF.
Key words: elliptic curve cryptosystem; ECDSA; JSF; width-3 joint sparse form (JSF3); AJHD

摘 要: J.A.Solinas 给出了整数对的最优带符号二进制表示,称做联合稀疏表示(JSF).JSF 表示长度至多是最
大整数的二进制长度加一,其平均汉明密度为 1/2.利用窗口方法扩展了联合稀疏表示,给出了整数对的一种新表
示方法:3-宽度联合稀疏表示(JSF3).该表示长度至多是最大整数的二进制长度加一,平均汉明密度为 19/52.因此,
利用 JSF3计算 uP+vQ比用 JSF大约提高 9%的效率.
关键词: 椭圆曲线密码;ECDSA;JSF;3-宽度联合稀疏表示(JSF3);AJHD
中图法分类号: TP309 文献标识码: A

1 Introduction

Known to all, the design of the Public Key Cryptosystem mostly depends on the particular algebra
construction. The basic public-key operation in a finite field GF(q) is to compute ga for a given element g∈GF(q)
and a positive integer a. This is typically accomplished by the binary method, based on the binary expansion of a.

∗ Supported by the National Natural Science Foundation of China under Grant No.90204015 (国家自然科学基金); the National Grand

Fundamental Research 973 Program of China under Grant No.G1999035804 (国家重点基础研究发展计划(973)); the Elitist Youth

Foundation of Henan Province under Grant No.021201400 in China (河南省杰出青年基金)
Received 2003-11-03; Accepted 2005-07-28

 张亚娟 等:整数对的低重量表示 JSF3 2005

The method requires approximately l/2 general multiplications and approximately l squarings (on average)
(l=).  q2log

More generally, it is commonly needed to evaluate expressions of the form gahb. In particular, most common
digital signatures (RSA, ECDSA) are verified by evaluating an expression of the above. This is typically
accomplished by the Straus’ Methods[1] (also called Squaring-Multiple Method), presented by Shamir in 1985. The
method requires proximately l general multiplications and proximately l squarings (on average). After then,
numerous methods for speeding up scalar multiplication have been discussed in the literature; for a survey, see
Ref.[2].

While on general Elliptic Curve E(GF(q)), P=(x,y)∈E(GF(q)), then −P=(x,−y). Thus point subtraction is as
efficient as addition. This motivates the use of a signed binary expansion (allowing coefficients 0 and ±1). A
particularly useful signed digit representation is the non-adjacent form (NAF)[3]. By using a window method, one
processes some other signed digit representation, called the width-w nonadjacent form (NAFw)[2−4]. (when w=2,
NAFw is equivalent to NAF). There is a simple and efficient algorithm for presenting NAFw of any integer. When
Computing kP, the method requires approximately l/(w+1) general point addition and l double.

Furthermore, many Elliptic Curve Cryptosystems require the computation of the form uP+vQ, where P,Q are
points on an elliptic curve, and u,v are integers, such as verification schemes of ECDSA. In the following, we will
call this form as multi scalar multiplications. So the efficiency of implementation depends mostly on the efficiency
of evaluation of the multi scalar multiplications. Thus, fast multi scalar multiplication is essential for Elliptic Curve
Cryptosystems. There are lots of research papers on the problem of speeding up uP+vQ in recent years[2−7].

For computing the form uP+vQ, J.A.Solinas suggested an optimal signed binary representation for pairs of
integers, called Joint Sparse Form (JSF). JSF is at most one bit longer than the binary expansion of the larger of the
two integers, and the average joint Hamming density among Joint Sparse Form representations is 1/2. This paper
presents the concept of form representation of integers, brings forward Width-3 Joint Sparse Form (JSF3), extends
the JSF method by using some other signed digit representation of integers, and also proves that the average joint
Hamming density(AJHD) is 19/52. So, this improvement can speed up the computation of the form uP+vQ by up to
9%, while compared to computation by using JSF.

The paper is organized as follows: Section 2 gives some preparation knowledge on the representation of
integers; Section 3 first gives the definition of JSF3 for pairs of positive integers u1,u2, then proves its unique
existence, and presents an algorithm for producing it, and finally shows AJHD of that is 19/52 via stochastic
process; Section 4 gives the application of the technique and discusses the avenues for further work.

2 Preparation Knowledge

A given nonegative integer n has a common binary expansion n=(al,…,a1,a0)= ,a∑
=

l

i

i
ia

0
2 i=0,1. It has another

binary expansion n=(bt,…,b1,b0)= b∑
=

t

i

i
ib

0
2 , i∈{0,±1,±3,…,±(2w−1−1)}, w>0. We call it the width-w generalized

(binary) expansion form of a (GFw). Obviously, there are many such expansions. We say that GFw is reduced if the
expansion has the property that the product of any w consecutive terms is nonegative. More, the reduced GFw is
width-w non adjacent form (NAFw) if the expansion has the property that there is at most a nonzero term of any w
consecutive terms. We know, every integer has a unique NAFw

[3]. There is also a simple and efficient algorithm for
computing the NAFw of a given integer. The NAFw of a positive integer is at most one bit longer than its binary
expansion, and the NAFw has the minimal Hamming weight among GFws of n. Namely, the average Hamming

 2006 Journal of Software 软件学报 Vol.17, No.9, September 2006

density among NAFw is l/(w+1)[3].

Definition 1. A width-3 generalized expansion of n is half sparse form (HSF3) if it satisfies the following
conditions:

1. Of any four consecutive terms, at least two are zero;
2. The product of any adjacent terms equals to 0, 3, 9.

Let n be a positive integer, then the notation “n mods 8” indicates that the modular reduction 8 is to return the
smallest residue in absolute value. Correspondingly for Width-3 generalized expansions of u, u=(al,…,a1,a0),
obviously, a0=0 if n is an even number; and if n is an odd number, then a0∈{n mods 8, (n+4) mods 8, −(n mods 8),
−((n+4) mods 8)}. So, we may call a0

1. Fetching-Original-Value of n (FOV(n)), if a0=n mods 8;
2. Fetching-Anti-Value of n (FAV(n)), if a0=(n+4) mods 8;
3. Fetching-Sign-Value of n (FSV(n)), if a0=−(n mods 8);
4. Fetching-Number-Value of n (FNV(n)), if a0=−((n+4) mods 8).

Lemma 1. For HSF3 for n, n=(al,…,a1,a0), we can obtain that:
1. a0 only equals to FOV(n), FAV(n), if n=±1, ±3 mod 16;
2. a0 may equal to FOV(n), FAV(n), FSV(n), if n=±5 mod 16;
3. a0 may fetch FOV(n), FAV(n), FSV(n), FNV(n), if n=±7 mod 16.

For any four consecutive terms (aj+3,aj+2,aj+1,aj), we use the sign of “0” as the value that is certain to be zero,
and use the sign of “*” as the value that is certain to be nonzero, and use the sign of “?” as the value that is not
certain. The pattern denoted by the signs of “0”, “*”, “?” is called pattern of aj. It is easy to follow that if the
expansion for n is HSF, when aj fetches FOV, FAV, FSV, FNV, then its pattern corresponds to the form of
(?,0,0,*),(0,*,0,*),(0,0,*,*),(0,0,*,*).

3 JSF3 for Pairs of Integers

We call the joint width-3 generalized expansions for integers n0, n1 the width 3-joint generalized expansion
form of n0, n1 (JGF3). Furthermore, we call it the reduced width-3 generalized expansion form of n0, n1 (JRF3) if
both are reduced. Analogically, we call it the joint NAF3 (JNF3). The number of the nonzero columns of JGF3 is
called the joint Hamming weight (JHW) and the ratio of JHW to its length is its average joint Hamming density
(AJHD), where n0, n1 run over l-bit integers of N. It isn't difficult to see that JHW of JNF3 is quite smaller among all
JGF3s, but it is not the smallest. Thereinafter, we give the expansion that is the smallest among JGF3s, whose AJHD
is 19/52, while that of JNF3 is 7/16.

Definition 2. The joint width-3 generalized expansion for integers n0, n1,
n0=(u0,m−1,...,u0,1,u0,0),
n1=(u1,m−1,...,u1,1,u1,0).

is called Width-3 Joint Sparse Form (JSF3(n0,n1)), shortly noted by JSF3, if the expansion satisfies the following
conditions:

1. JSF3-1: Of any four consecutive columns, at least two are zeros;
2. JSF3-2: For every row, the product of the adjacent terms is 0, 3, 9;
3. JSF3-3: There are five pieces of status for interconnect of two rows:

a) If there exists i∈{0,1} which satisfies ui,jui,j+1=3,9, i.e. ui,j≠0, ui,j+1≠0, then u1−i,j=0, u1−i,j+1≠0.
b) If u0,j, u1,j are not both zero, then u0,j+2=0, u1,j+2=0, or u0,j+2≠0, u1,j+2≠0. Furthermore, if u0,j−2, u0,j−1,

u1,j−2, u1,j−1 are not all zero, then u0,j+2=0, u1,j+2=0.

 张亚娟 等:整数对的低重量表示 JSF3 2007

c) If u0,j≠0, u0,j+2≠0, u1,j≠0, u1,j+2≠0, then there exists i∈{0,1} which satisfies ui,jui,j+2>0, ui,j+2=±3 and

u1−i,ju1−i,j+2>0, u1−i,j+2=±1, or u1−i,ju1−i,j+2<0, ui,j+2=±3.
d) If u0,j−2, u0,j−1u1,j−2u1,j−1 are all zero and u0,j≠0, u1,j≠0, then u0,j+3u1,j+4=u0,j+4u1,j+3=0.
e) If there exists i∈{0,1} which satisfies ui,j≠0, ui,j+1=±3, then u0,j+4=0, u1,j+4=0, or u0,j+4≠0, u1,j+4≠0.

Obviously, each row expansion of JSF3 is HSF3 of an integer.

3.1 Uniqueness of JSF3 for pairs of integers

Theorem 1. A pair of positive integers has at most one JSF3.
Proof: Suppose, on the contrary, that there are two distinct JSF3:

n0=(u0,m−1,…,u0,1,u0,0)=(w0,n−1,…,w0,1,w0,0),
n1=(u1,m−1,…,u1,1,u1,0)=(w1,n−1,…,w1,1,w1,0).

Since these representations are different, then ui,j≠wi,j for some i,j. Let g be the minimal value of j for which the
two forms disagree. For i=0,1, set ki=(ui,m−1,...,ui,g+1,ui,g)=(wi,n−1,…,wi,g+1,wi,g). Since the expansions disagree at j=g,
we may assume that u0,g≠w0,g by exchanging the roles of n0, n1 if necessary. It follows that k0 is odd, for otherwise
we would have u0,g=w0,g=0. Therefore u0,g, w0,g must have values ±1, ±3. Then it follows from Definition 2 that

(u0,g+3,u0,g+2,u0,g+1,u0,g)=(?,0,0,*),(0,*,0,*),(0,0,*,*),
(w0,g+3,w0,g+2,w0,g+1,w0,g)=(?,0,0,*),(0,*,0,*),(0,0,*,*),

and when u0,g, w0,g, fetch FOV, FAV, FSV, FNV, u1,g, w1,g also correspond to only fetching FOV, FAV, FSV, FNV if
k0, k1 are both odd.

We can prove that the assumption is not correct by analyzing the four cases of u0,g, w0,g. Because the space is
limited, the details are omitted.

3.2 The existence of JSF3 for pairs of integers

The most straightforward way to prove the existence of JSF3 for every pair of positive integers n0, n1 is to
present an algorithm for producing it.

Algorithm 1. JSF3.
Input: Nonnegative integers n0,n1, not both zero.
Output: JSF3 for integers n0, n1.
n0=(u0,m−1,…,u0,1,u0,0)
n1=(u1,m−1,…,u1,1,u1,0),ui,j∈{0,±1,±3}, i=0,1, 0≤j≤m.
1. Set k0←n0, k1←n1;
2. Set j←0;
3. Set u0,−2←0, u0,−1←0, u1,−2←0, u1,−1←0;
4. While k0>0 or k1>0 do

For i from 0 to 1 do
If ki is even, then u←0;
Else

u←ki mods 8
If ki≡±1,±3 mod 16 then

If k1−i≡4 mod 8 then u←(u+4) mods 8
If k1−i≡±5,±7 mod 16 and ki≡±13,±15 mod 32 and
u0,j−2=u0,j−1=u1,j−2=u1,j−1=0 then u←(u+4) mods 8
EndIf

 2008 Journal of Software 软件学报 Vol.17, No.9, September 2006

Elseif ki≡±5 mod 16 then

If k1−i≡4 mod 8 then u←(u+4) mods 8
If k1−i≡±2 mod 8 then u←−u
If k1−i≡±13,±15 mod 32 and u0,j−2=u0,j−1=u1,j−2=u1,j−1=0 then
u←(u+4) mods 8
Endif

 Elseif ki≡±7 mod 16 then
If k1−i≡4 mod 8 then u←(u+4) mods 8
If k1−i≡±2 mod 8 then

 a0←((k0>>3)+(k0>>4)) mod 2
a1←((k1>>3)+(k1>>4)) mod 2
If a0=a1 then u←−u
else u←−((u+4) mods 8)
Endif

Endif
If k1−i≡±13,±15 mod 32 and u0,j−2=u0,j−1=u1,j−2=u1,j−1=0 then
u←(u+4) mods 8

 Endif
 Endif
 Endif

Set ui,j←u;
Next i;

Set k0←(k0−u0,j)/2, k1←(k1−u1,j)/2;
Set j←j+1;
EndWhile

In order to prove the desired properties of JSF3, it is necessary to generalize Algorithm 1 by allowing inputs
JRF3 for a pair of e0, e1.

Algorithm 2. JSF3.
Input: JRF3 for integers e0,e1, not both zero.

e0=(e0,m−1,…,e0,1,e0,0),
e1=(e1,m−1,…,1,e1,0). ei,j∈{0,±1,±3}, i=0,1, 0≤j≤m.

Output: JSF3 for e0, e1
1. Set j←0;
2. Set d0←0, d1←0;
3. Set u0,−2←0, u0,−1←0, u1,−2←0, u1,−1←0;
4. Set a0←e0,0, b0←e0,1, x0←e0,2, y0←e0,3, z0←e0,4;
5. Set a1←e1,0, b1←e1,1, x1←e1,2, y1←e1,3, z1←e1,4;
6. Set k0←a0+2b0+4x0+8y0+16z0;
7. Set k1←a1+2b1+4x1+8y1+16z1;
8. While k0>0 or k1>0 do

For i from 0 to 1 do
If ki is even then u←0

 张亚娟 等:整数对的低重量表示 JSF3 2009

Else SIMILAR TO Algorithm 1
Set ui,j←u
Set βi,j←(ui,j−2,ui,j−1,di,ei,j,ei,j+1,ei,j+2,ei,j+3,ei,j+4)

Next i
Set Sj←(β0,j,β1,j)
Set d0←(d0+a0−u0,j)/2, d1←(d1+a1−u1,j)/2
Set a0←b0, b0←x0, x0←y0, y0←z0, z0←e0,j+5

Set a1←b1, b1←x1, x1←y1, y1←z1, z1←e1,j+5

Set j←j+1 (if j>m, let ei,j=0)
Set k0←d0+a0+2b0+4x0+8y0+16z0

Set k1←d1+a1+2b1+4x1+8y1+16z1

EndWhile
It is easy to check that, in the special case in which the ei,j’s are “ordinary” unsigned bits, Algorithm 2 is

equivalent to Algorithm 1. So the correctness of the Algorithm 2 insures that of the Algorithm 1.
We call the vectors Sj the states of the algorithm, The output vector (u0,j,u1,j) is a function of the state Sj. Thus

we may describe the action of Algorithm 2 as follows: the jth iteration of the Do loop inputs the state Sj−1, outputs

(u0,j−1,u1,j−1), and changes the states to Sj, namely, . j
uu

j SS jj  → −−
−

),(
1

1,11,0

Let τi,j=di+ei,j+2ei,j+1+4ei,j+2+8ei,j+3+16ei,j+4. We next enumerate the possible values for the state and all the
states are divided into the following 24 cases of the difference of Sj (see Tables 1 and 2).

Table 1 State-Table

Sj β0,j β1,j Form-of-Fetch-Value
B0,0 t0,j≡0 mod 4 t1,j≡0 mod 4 (0,0)
B0,1 t0,j≡4 mod 8 t1,j≡1 mod 2 (0,FAV)
B0,2 t0,j≡0 mod 8 t1,j≡1 mod 2 (0,FOV)
B0,3 t0,j≡±2 mod 8 t1,j≡±1, ±3 mod 16 (0,FOV)
B0,4 t0,j≡±2 mod 8 t1,j≡±5 mod 16 (0,FSV)
B0,5 t0,j≡±2,±6 mod 32 t1,j≡±7 mod 32 (0,FSV)
B0,6 t0,j≡±2,±6 mod 32 t1,j≡±9 mod 32 (0,FNV)
B0,7 t0,j≡±10,±14 mod 32 t1,j≡±7 mod 32 (0,FNV)
B0,8 t0,j≡±10,±14 mod 32 t1,j≡±9 mod 32 (0,FSV)
B1,0 t0,j≡0 mod 2 t1,j≡0 mod 2 (0,0)(*1)
B1,1 t0,j≡1 mod 2 t1,j≡4 mod 8 (FAV,0)
B1,2 t0,j≡1 mod 2 t1,j≡0 mod 8 (FOV,0)
B1,3 t0,j≡±1,±3 mod 16 t1,j≡±2 mod 8 (FOV,0)
B1,4 t0,j≡±5 mod 16 t1,j≡±2 mod 8 (FSV,0)
B1,5 t0,j≡±7 mod 32 t1,j≡±2,±6 mod 32 (FSV,0)
B1,6 t0,j≡±9 mod 32 t1,j≡±2,±6 mod 32 (FNV,0)
B1,7 t0,j≡±7 mod 32 t1,j≡±10,±14 mod 32 (FNV,0)
B1,8 t0,j≡±9 mod 32 t1,j≡±10,±14 mod 32 (FSV,0)
B2,0 t0,j≡1 mod 2 t1,j≡1 mod 2 (FOV,FOV)(*2)
B2,1 t0,j≡±13,±15 mod 32 t1,j≡±5,±7 mod 16 (FAV,FAV)(*3)
B2,2 t0,j≡±5,±7 mod 16 t1,j≡±13,±15 mod 32 (FAV,FAV)(*3)
B2,3 t0,j≡±1,±3 mod 32 t1,j≡±1 mod 2 (FOV,FOV)(*3)
B2,4 t0,j≡±13,±15 mod 32 t1,j≡±1,±3 mod 16 (FOV,FOV)(*3)
B2,5 t0,j≡±5,±7 mod 16 t1,j≠±13,±15 mod 32 (FOV,FOV)(*3)

 2010 Journal of Software 软件学报 Vol.17, No.9, September 2006

Table 2 State-Following-Table

Sj u0,j u1,j Sj+1 Sj u0,j u1,j Sj+1
B0,0 0 0 B0,0,B1,0 B1,0 0 0 (*4)
B0,1 0 ±1,±3 B1,0 B1,1 ±1,±3 0 B1,0
B0,2 0 ±1,±3 B0,0 B1,2 ±1,±3 0 B0,0

B0,3 0 ±1,±3 B1,2 B1,3 ±1,±3 0 B0,2
B0,4 0 ±3 B2,0 B1,4 ±3 0 B2,0
B0,5 0 ±1 B2,0 B1,5 ±1 0 B2,0
B0,6 0 ±3 B2,0 B1,6 ±3 0 B2,0
B0,7 0 ±3 B2,0 B1,7 ±3 0 B2,0
B0,8 0 ±1 B2,0 B1,8 ±1 0 B2,0
B2,0 ±1,±3 ±1,±3 B0,0 B2,3 ±1,±3 ±1,±3 B0,0
B2,1 ±1,±3 ±1,±3 B1,0 B2,4 ±1,±3 ±1,±3 B0,0

B2,2 ±1,±3 ±1,±3 B1,0 B2,5 ±1,±3 ±1,±3 B0,0

Note: (*1) means at least one isn’t divisible by 4; (*2) means u0,j−2, u0,j−1, u1,j−2, u1,j−1 are not all zero; (*3)
means u0,j−2, u0,j−1, u1,j−2, u1,j−1 are all zero, and t1,j≠±13,±15 mod 32 means t1,j=±1,±3 mod 32, or t1,j=±5,±7 mod 16;
(*4) indicates that any state is a possible successor to state B1,0, excluding B0,0, B1,0.

It is easy to verify the following by checking all the cases. As a result, we have the following values for Sj+1 for
each Sj. All the following states are shown in Table 2. Finally, it will be useful to further combine the above 24
states into six as follows (see Table 3).

Table 3 Simple-State-Following-Table

Sj u0,j=u1,j=0 Sj+1
C0 B0,0 YES C0,C1
C1 B1,0 YES C2,C3,C4,C5
C2 B0,1,B1,1,B2,1,B2,2 NO C1
C3 B0,2,B1,2,B2,0 NO C0
C4 B0,3,B0,4,B0,5,B0,6,B0,7,B0,8 NO C3
C4 B1,3,B1,4,B1,5,B1,6,B1,7,B1,8 NO C3
C5 B2,3,B2,4,B2,5 NO C0

Theorem 2. Algorithm 1 always outputs the Width-3 Joint Sparse Form for its inputs.
Proof: It is straightforward to verify that the expansion produced by the Algorithm 2 is in fact JGF for n0, n1.

It remains to prove that this expansion satisfies the terms of Definition 2. The process is similar to that.

3.3 Efficiency of JSF3 for pairs of integers

Now, Our primary task is to prove that AJHD of JSF3 is 19/52. It is easy to see that GF3 is at most one bit
longer than the ordinary binary expansion. As a result, JSF3 is at most one bit longer than the binary expansion of
the larger of the two integers.

Theorem 3. The average joint Hamming density among Joint 3-Sparse Form representations is 19/52.
Proof: Let state space Γ={Gi|i=0,1,…,10,11}, where,
 G0={Sn∈C0|Sn−1∈C5}, G1={Sn∈C0|Sn−2∈C4} G2={Sn∈C0|Sn−1∉C5 ,Sn−2∉C4},
 G3={Sn∈C1|Sn−1∈C2} G4={Sn∈C1|Sn−1∈G1}, G5={Sn∈C1|Sn−1∈C2}
 G6={Sn∈C1|Sn−1∉(G1∪G2∪C2) }, G7={Sn∈C2}, G8={Sn∈C3|Sn−1∈C4},
 G9={Sn∈C3|Sn−1∉C4}, G10={Sn∈C4}, G11={Sn∈C5}

Obviously, a stochastic process {Sn|n≥0} output by Alg.2 takes values in a countable set Γ, and is a homogeneous
Markov Chain in terms of Γ (see definition in page 252 of Ref.[8]). So, let pi,j denote the transition probabilities
pi,j(n), where pi,j(n)=P{Sn+1∈Gj|Sn∈Gi}. {pi,j} forms the following transition matrix P (next page). From transition
matrix P, for any two states Gi,Gj∈Γ, the state Gi is equivalent to Gj, so {Sn|n≥0} is irreducible, and for any Gj, it is

 张亚娟 等:整数对的低重量表示 JSF3 2011

nonrecurrent. Therefore, the chain exists stationary distrubution{πj,Gj∈Γ},and limm→∞ j

m

n

n
jip

m
π=







 ∑
=1

)(
,

1 , where

=P{S)(
,
n
jip (m+n)∈Gj|Sm∈Gi},(Gi,Gj∈,m≥0,n≥1). From the equations below, which πj (j=0,1,…,11) satisfies[8],























































=

000000000001
000100000000
000000000100
000000000010
000000001000
4
1

3
1

6
10

4
10000000

44
15

44
12

44
60

44
110000000

8
30

4
10

8
30000000

001000000000

00000
3
2000

3
100

000000
16
1100

16
500

0000000
4
30

4
100

Ρ

(π0,π1,…,π11,1)=(π0,π1,…,π11)(P,g⊥).
where g=(1,1,1,1,1,1,1,1,1,1,1,1), and the symbol ⊥ denotes matrix transposition.We get the solution

(9/130, 4/65, 1/5, 17/260, 3/65, 11/260, 3/20, 17/260, 4/65, 7/65, 4/65, 9/130).
Let its absorbing probabilities pj(n)=p{Sn∈Gj},j=0,1,…,11, and initial distribution probabilities {pj}=p{S0∈Gj},

j=0,1,…,11 of the chain, then the vector of (u0,j,u1,j)=(0,0) is the output by Gj,j=0,1,…,6. So AJHD is given by

.

1lim1lim

1lim)(1lim

11

7

11

7 1

)(
,

1

)(
,

11

7

11

7 1

)(
,

1

11

7

∑

∑ ∑∑∑∑

∑ ∑∑∑∑

=

= =
∞→

=
∞→

=

= = Γ∈
∞→

==
∞→

=









=
















=











==Σ

j
j

j

m

n

n
jim

m

n

n
jim

j G
i

j
i

m

n G

n
jim

m

n
j

j
m

p
m

p
m

P

pp
m

np
m

i

i

π

Therefore Σ=19/52. The AJHD of τ-NJSF is 19/52.

4 Applications to ECC

The execution time of ECC schemes such as the ECDSA is typically dominated by point multiplications, In
ECDSA, there are two types of point multiplications kP, where P is fixed (signature generation), and uP+vQ, where
P is fixed and Q is not known a priori (signature verification). Using the above algorithm technique, the latter type
can be sped up by precomputing some data for points,such as 2P, 2Q, 3P, 3Q, P±Q, P±3Q, 3P±Q, 3P±3Q, and
storing some data for points such as P, Q, 3P, 3Q, P±Q, P±3Q, 3P±Q, 3P±3Q. Adapting the fast Shamir Method by
using JSF3 yields a technique which requires approximately l doublings and 19l/52 general additions (on average).
In other words, that sometimes works almost 9% faster than that by using the Joint Sparse Form.

The front type can also be sped up. The simplest approach is described below. Suppose that the order r of the
private key space is less than 22l. Let Q=2lP then k=a+b2lQ, thus compute k=aP+bQ, one applies Alg.1 to generate
JSF3 for integers a, b. This technique of computing it by using JSF3 requires approximately 2l doublings and 19l/52,
a saving of approximately 33l/52 general additions over the addition-subtraction method, and approximately 7l/52

 2012 Journal of Software 软件学报 Vol.17, No.9, September 2006

over that by using the Joint Sparse Form. If the Elliptic Curves are particular curves, as Koblitz Curves, there may
the form with width-3, analogous to JSF3. So, it would be of interest to construct the form which can be applied to
Koblitz Curves.

References:
[1] Cohen H. A Course in Computational Algebraic Number Theory. Berlin: Springer-Verlag, 1993.

[2] Gordon DM. A survey of fast exponentiation methods. Journal of Algorithms, 1998,27(1):129−146.

[3] Brown M, Hankerson D, Lopez J, Menezes A. Software implementation of NIST elliptic curves over prime fields. In: Naccache D,

ed. Topics in Cryptology—CT-RSA 2001. LNCS 2020, Berlin: Springer-Verlag Heidelberg, 2001. 250−265.

[4] Avanzi R. On multi-exponentiation in cryptography. 2003. http://citeseer.ist.psu.edu/avanzi02multiexponentiation.html

[5] Bernstein DJ. Pippenger’2 exponentiation algorithm. 2002. http://cr.rp.to/papers.html

[6] Ciet M, Lange T, Sica F, Quisquater JJ. Improved algorithms for efficient arithmetic on elliptic curves using fast endomorphisms.

In: Biham E, ed. Advances in Cryptology-Eurocrypt 2003, LNCS 2656. Berlin, Heidelberg: Springer-Verlag, 2003. 388−400.

[7] Morain F, Olivos J. Speeding up the computations on an elliptic curve using addition-subtraction chains. Informatique Theorique et

Applications/Theoritical Informatics and Applications, 1990,24(6):531−543.

[8] Chung KL. Elementary Probability Theory with Stochastic Processes. 3rd ed. Berlin: Springer-Verlag, 1978.

ZHANG Ya-Juan was born in 1974. She
is a Ph.D. candidate at the Information
Engineering University. Her current
research area is information security.

 KUANG Bai-Jie was born in 1976. He is a
docent at the Department of Network
Engineering, Information Engineering
University. His current research area is
information security.

ZHU Yue-Fei was born in 1962. He is a
professor and doctoral supervisor at the
Department of Network Engineering,
Information Engineering University. His
research area is information security.

	Introduction
	Preparation Knowledge
	JSF3 for Pairs of Integers
	Uniqueness of JSF3 for pairs of integers
	The existence of JSF3 for pairs of integers
	Efficiency of JSF3 for pairs of integers

	Applications to ECC

