ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.17, No.9, September 2006, pp.2004—-2012 http://www.jos.org.cn
DOI: 10.1360/j0s172004 Tel/Fax: +86-10-62562563
© 2006 by Journal of Software. All rights reserved.

JSF,

( , 450002)
L ow-Weight JSF3; Representations for Pairs of Integers

ZHANG Ya-Juan®, ZHU Yue-Fei, KUANG Bai-Jie

(Department of Network Engineering, |nformation Engineering University, Zhengzhou 450002, China)
+ Corresponding author: Phn: +86-371-63530540, E-mail: springzyj @yahoo.com.cn

Zhang YJ, Zhu YF, Kuang BJ. Low-Weight JSF; representations for pairs of integers. Journal of Software,
2006,17(9):2004-2012. http://www.jos.org.cn/1000-9825/17/2004.htm

Abstract: J.A.Solinas suggested an optimal signed binary representation for pairs of integers, which is called a
Joint Sparse Form (JSF). JSF is at most one hit longer than the binary expansion of the larger of the two integers,
and the average joint Hamming density among Joint Sparse Form representations is 1/2. This paper extends the
Joint Sparse Form by using a window method, namely a new representations, for pairs of integers, which is called
Width-3 Joint Sparse Form (JSF3). The representation is at most one bit longer than the binary expansion of the
larger of the two integers, and the average joint Hamming density is 19/52. So, computing the form of uP+vQ by
using JSF; is almost 9% faster than that by using JSF.
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1 Introduction

Known to all, the design of the Public Key Cryptosystem mostly depends on the particular algebra
construction. The basic public-key operation in a finite field GF(q) is to compute g® for a given element ge GF(q)
and a positive integer a. This is typically accomplished by the binary method, based on the binary expansion of a.
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The method requires approximately 1/2 general multiplications and approximately | sgquarings (on average)
(1=[log, a).

More generally, it is commonly needed to evaluate expressions of the form g2h®. In particular, most common
digital signatures (RSA, ECDSA) are verified by evaluating an expression of the above. This is typically
accomplished by the Straus Methods'¥ (also called Squaring-Multiple Method), presented by Shamir in 1985. The
method requires proximately | general multiplications and proximately | sguarings (on average). After then,
numerous methods for speeding up scalar multiplication have been discussed in the literature; for a survey, see
Ref.[2].

While on genera Elliptic Curve E(GF(q)), P=(x,y) eE(GF(q)), then —P=(x,—y). Thus point subtraction is as
efficient as addition. This motivates the use of a signed binary expansion (allowing coefficients 0 and +1). A
particularly useful signed digit representation is the non-adjacent form (NAF)®. By using a window method, one
processes some other signed digit representation, called the width-w nonadjacent form (NAF,)2 4. (when w=2,
NAF,, is equivalent to NAF). There is a simple and efficient algorithm for presenting NAF,, of any integer. When
Computing kP, the method requires approximately |/(w+1) general point addition and | double.

Furthermore, many Elliptic Curve Cryptosystems require the computation of the form uP+vQ, where P,Q are
points on an elliptic curve, and u,v are integers, such as verification schemes of ECDSA. In the following, we will
call this form as multi scalar multiplications. So the efficiency of implementation depends mostly on the efficiency
of evaluation of the multi scalar multiplications. Thus, fast multi scalar multiplication is essential for Elliptic Curve
Cryptosystems. There are |ots of research papers on the problem of speeding up uP+vQ in recent years2 .

For computing the form uP+vQ, J.A.Solinas suggested an optimal signed binary representation for pairs of
integers, called Joint Sparse Form (JSF). JSF is at most one bit longer than the binary expansion of the larger of the
two integers, and the average joint Hamming density among Joint Sparse Form representations is 1/2. This paper
presents the concept of form representation of integers, brings forward Width-3 Joint Sparse Form (JSF3), extends
the JSF method by using some other signed digit representation of integers, and also proves that the average joint
Hamming density(AJHD) is 19/52. So, this improvement can speed up the computation of the form uP+vQ by up to
9%, while compared to computation by using JSF.

The paper is organized as follows. Section 2 gives some preparation knowledge on the representation of
integers; Section 3 first gives the definition of JSF; for pairs of positive integers ug,u,, then proves its unique
existence, and presents an algorithm for producing it, and finally shows AJHD of that is 19/52 via stochastic
process; Section 4 gives the application of the technique and discusses the avenues for further work.

2 Preparation Knowledge
! .
A given nonegative integer n has a common binary expansion n:(a.,...,al,ao):Zai 2' ,3=0,1. It has another
i=0

t .
binary expansion n=(by,...,by,bo)=>"b 2", be{0+1,+3,... £(2**-1)}, w>0. We call it the width-w generalized
i—0

(binary) expansion form of a (GF,,). Obviously, there are many such expansions. We say that GF,, is reduced if the
expansion has the property that the product of any w consecutive terms is nonegative. More, the reduced GF,, is
width-w non adjacent form (NAF,,) if the expansion has the property that there is at most a nonzero term of any w
consecutive terms. We know, every integer has a unique NAF,®. There is also a simple and efficient algorithm for
computing the NAF,, of a given integer. The NAF,, of a positive integer is at most one bit longer than its binary
expansion, and the NAF,, has the minimal Hamming weight among GF,s of n. Namely, the average Hamming
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density among NAF,, is I/(w+1)5.

Definition 1. A width-3 generalized expansion of n is half sparse form (HSF;) if it satisfies the following
conditions:

1.  Of any four consecutive terms, at least two are zero;

2. Theproduct of any adjacent terms equalsto O, 3, 9.

Let n be a positive integer, then the notation “n mods 8” indicates that the modular reduction 8 is to return the
smallest residue in absolute value. Correspondingly for Width-3 generalized expansions of u, u=(a,...,a1,a),
obviously, a,=0 if nis an even number; and if nis an odd number, then age{n mods 8, (n+4) mods 8, —(n mods 8),
—((n+4) mods 8)}. So, we may call ay

1.  Fetching-Original-Value of n (FOV(n)), if ap=n mods §;

2. Fetching-Anti-Value of n (FAV(n)), if ap=(n+4) mods §;

3. Fetching-Sign-Value of n (FSV(n)), if a;=—(n mods 8);

4.  Fetching-Number-Value of n (FNV(n)), if ag=—((n+4) mods 8).

Lemma 1. For HSF; for n, n=(a,,...,a;,aq), we can obtain that:

1. ayonly equalsto FOV(n), FAV(n), if n=t1, £3 mod 16;

2. agmay equa to FOV(n), FAV(n), FSV(n), if n=+5 mod 16;

3. agmay fetch FOV(n), FAV(n), FSV(n), FNV(n), if n=+7 mod 16.

For any four consecutive terms (&.3,3j+2,8+1,8;), we use the sign of “0” as the value that is certain to be zero,
and use the sign of “*” as the value that is certain to be nonzero, and use the sign of “?" as the value that is not
certain. The pattern denoted by the signs of “0”, “*”, “?” is called pattern of a,. It is easy to follow that if the
expansion for n is HSF, when a fetches FOV, FAV, FSV, FNV, then its pattern corresponds to the form of
(2,0,0,*),(0,*,0,*),(0,0,*,*),(0,0,* ,*).

3 JSF;for Pairsof Integers

We call the joint width-3 generalized expansions for integers ng, n; the width 3-joint generalized expansion
form of ng, n; (JGF3). Furthermore, we call it the reduced width-3 generalized expansion form of ng, n; (JRF3) if
both are reduced. Analogically, we call it the joint NAF; (JNF3). The number of the nonzero columns of JGF; is
called the joint Hamming weight (JHW) and the ratio of JHW to its length is its average joint Hamming density
(AJHD), where ng, ny run over |-bit integers of N. It isn't difficult to see that JHW of JNF; is quite smaller among all
JGF;s, but it is not the smallest. Thereinafter, we give the expansion that is the smallest among JGF3s, whose AJHD
is19/52, while that of INF3is 7/16.

Definition 2. The joint width-3 generalized expansion for integers ng, ny,

No=(Ug,m-1,++Uo,1,U0,0)
M=(Ugm-1,---,U1,1,U1,0)-
is called Width-3 Joint Sparse Form (JSFs(ng,n,)), shortly noted by JSF;, if the expansion satisfies the following
conditions:
1. JSF;-1: Of any four consecutive columns, at |east two are zeros,
2. JSF;-2: For every row, the product of the adjacent termsisO, 3, 9;
3. JSFs-3: There are five pieces of status for interconnect of two rows:
a) If thereexistsie{0,1} which satisfies u;;u;:1=3,9, i.e. u; #0, U;;+1#0, then u,_;;=0, u;_; j+1#0.
b)  If upj, Uy are not both zero, then U j.+5=0, Uy j+,=0, OF Ugj+2#0, Uy j.+#0. Furthermore, if Ugj_o, Ugj-1,
Uzj_2, Uyj_g are not all zero, then Ugj+,=0, Uy j:,=0.
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c)  If up;#0, Ugj.+2#0, uy#0, Uy j.,#0, then there exists ie{0,1} which satisfies u;;u; j+2>0, U;j+,=%3 and
Uy jU1-ij+2>0, Upjj+2=%1, OF Up_j Uy j+2<0, Ujj+2=%3.
d)  If Upja, Ugj-1U1joUyjq are all zero and ug;=0, uyj#0, then Ugj.3Us j+4=Ug j+al1 j+3=0.
€) If thereexistsie{0,1} which satisfies u; j#0, u;j+1=%3, then ug;+4=0, Uy j+4=0, Or Ugj+4#0, Uy j+470.
Obviously, each row expansion of JSF3 is HSF; of an integer.

3.1 Uniqueness of JSF; for pairsof integers

Theorem 1. A pair of positive integers has at most one JSF».

Proof:  Suppose, on the contrary, that there are two distinct JSF3:
No=(Uo,m-1,--+:U0,1,U0,0)=(Wo,n 1.+ - \Wo,1,Wo,0),
M=(Uzm-1,-++,U1,2,U1,0)=(W1,n-1,-. -, W1,1,W1 0).

Since these representations are different, then u; j=w; ; for some i,j. Let g be the minimal value of j for which the
two forms disagree. For i=0,1, set Ki=(Uj m-1,--.,Ui g+1,Ui g)=(Wi n-1,-..,Wi g+1,Wi ¢). Since the expansions disagree at j=g,
we may assume that ug j#Wo g by exchanging the roles of ng, n, if necessary. It follows that ko is odd, for otherwise
we would have ug g=Wq 4=0. Therefore ug g, Wo g must have values +1, £3. Then it follows from Definition 2 that

(Uo,g+3,Ug,g+2,Up g+1,Uo,g)=(?,0,0,%),(0,*,0,%),(0,0,* *),
(Wo,g+3:Wo,g+2:Wo,g+1,.Wo,5)=(?,0,0,%),(0,*,0,%),(0,0,* %),
and when ug g, Wo g, fetch FOV, FAV, FSV, FNV, u, 4, W, 4 also correspond to only fetching FOV, FAV, FSV, FNV if
ko, kq are both odd.

We can prove that the assumption is not correct by analyzing the four cases of ugg, Wo4. Because the space is

limited, the details are omitted.

3.2 Theexistence of JSF; for pairsof integers

The most straightforward way to prove the existence of JSF; for every pair of positive integers ng, n; is to
present an algorithm for producing it.
Algorithm 1. JSF.
Input: Nonnegative integers no,n;, not both zero.
Output: JSF; for integers ng, n;.
No=(Ug,m-1,-+,Uo,1,Up,0)
N1=(Uym-1,..-,U1,1,U10), Ui j€{ 041,43}, i=0,1, O<j<m.
1. Set Kg¢—ng, ky<—ny;
2. Setj«0;
3. Setup »¢-0, Uy 1¢-0, Uy <0, U; _1¢<-0;
4.  While ky>0 or k;>0 do
For i from 0 to 1 do
If k; is even, then u«0;
Else
u«k; mods 8
If k=%1,+3 mod 16 then

If ky_j=4 mod 8 then u«(u+4) mods 8

If ki_j=t5,+7 mod 16 and ki=t13,+15 mod 32 and

Up j—2=Ug j-1=Uy j_p=U1 j_1=0 then u«(u+4) mods 8

Endif
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Elseif ki=t5 mod 16 then
If k;_i=4 mod 8 then u«(u+4) mods 8
If ky_j=+2 mod 8 then u<——u
If ky_i=+13,£15 mod 32 and Ug;_»=Ug_1=Usj_2=U1j_1=0 then
u«—(u+4) mods 8
Endif
Elseif k=+7 mod 16 then
If k;_i=4 mod 8 then u«(u+4) mods 8
If ki i=t2 mod 8 then
ap¢—((ko>>3)+(ko>>4)) mod 2
¢ ((k;>>3)+(k;>>4)) mod 2
If ag=a; then u«-u
else u«—((u+4) mods 8)
Endif
Endif
If k;_j=+13,£15 mod 32 and Up_>=Ugj_1=U1 j_p=U1 j_1=0 then
u<—(u+4) mods 8
Endif
Endif
Endif
Set u; j<—U;
Next i;
Set Koe—(ko—Uo;)/2, ka<—(ki—Uy )/2;
Set j«j+1;
EndWhile

In order to prove the desired properties of JSF, it is necessary to generalize Algorithm 1 by allowing inputs

JRF; for apair of e, e;.
Algorithm 2. JSFs.
Input: JRF; for integers ey,e;, not both zero.

€=(€m-1---,€0,1,€0,0),
e=(é1m-1,--- 1,€10)- &;€{0,+1,£3}, i=0,1, O<j<m.

Output: JSF; for ey, €1

© N o kA~ wwDdDPRE

Set j«0;
Set dp<—0, d1<-0;
Set Up _2¢-0, Up_1¢-0, U3 _»¢-0, U; _1¢<-0;
Set ag¢—€0,0, Po¢—€0,1, Xo¢—€0.2, Yo¢—€0,3, Zo¢—Eo,4;
Set ay<—€1 0, b1¢—€1 1, X1¢-€1 2, Y1¢-€13, Z1<€14;
Set ko¢«—ag+20o+4%g+8Yo+162;
Set ky«—a;+2b;+4x,+8y,+162;;
While k>0 or k>0 do

For i from0Oto 1 do

If k; is even then u«-0

© PEEREBEAD
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Else SIMILAR TO Algorithm 1

Set Ujj<u

Set B j(Uij-2,Ui j-1,0,8 j,6 j+1,6 42,6 j+3,E j+4)

Next i

Set §<(foj. 1))

Set dy<—(do+ag—Uo;)/2, dy—(di+ay—uyj)/2
Set ag<—ho, boe—Xo, Xo<Yo, Yo—20, Zo—€pj+5
Set a;¢-by, bie—Xq, X1-Y1, Y1271, Z1¢€1 45
Set j«—j+1 (if j>m, let g ;=0)

Set ko¢«—dg+ag+2by+4xy+8y+1624
Set ky«—d;+a;+2b+4x,+8y;,+162;

EndWhile

2009

It is easy to check that, in the special case in which the e ;’s are “ordinary” unsigned bits, Algorithm 2 is

equivalent to Algorithm 1. So the correctness of the Algorithm 2 insures that of the Algorithm 1.

We call the vectors § the states of the algorithm, The output vector (Ug;,us;) is afunction of the state §. Thus

we may describe the action of Algorithm 2 as follows: the j"iteration of the Do loop inputs the state S-1, outputs

(Ugj-1,U1j-1), and changes the states to §, namely, S

(Up,j-1.th,j-1)

I

Let 7;=di+e ;+26 j.1+46 j+,+886 j.3+166 j.4. We next enumerate the possible values for the state and all the
states are divided into the following 24 cases of the difference of § (see Tables 1 and 2).

Table1l State-Table

S Lo, P Form-of-Fetch-Value

Boo to;=0 mod 4 t1;=0 mod 4 (0,0)

Boa to;=4 mod 8 t; ;=1 mod 2 (O,FAV)
Bo2 to;=0 mod 8 t1=1 mod 2 (0,FOV)
Bos toj=t2 mod 8 t1j=t1, +3 mod 16 (0,FOV)
Bo4 toj=t2 mod 8 t1=+5 mod 16 (O,Fsv)
Bos to,=+2,+6 mod 32 tj=+7 mod 32 (0,Fsv)
Bos  to;=*2,+6 mod 32 t;=+9 mod 32 (0,FNV)
Bo7 to;=+10,+14 mod 32 ty;=+7 mod 32 (0,FNV)
Bos  to=+10,+14 mod 32 t1=+9 mod 32 (O,FsV)
Bio to,=0 mod 2 t1,;=0 mod 2 (0,0(*1)
Bis to;=1 mod 2 ty;=4 mod 8 (FAV,0)
Bi2 to;=1 mod 2 t1;=0 mod 8 (FOV,0)
Bis to;=+1,+3 mod 16 t;j=+2 mod 8 (FOV,0)
Big to =5 mod 16 t1j=t2 mod 8 (FSV,0)
Bis toj=7 mod 32 t1=t2,46 mod 32 (FSV,0)
Bie toj=£9 mod 32 tyj=%2,+6 mod 32 (FNV,0)
B17 to,=+7 mod 32 t;=+10,+14 mod 32 (FNV,0)
Buis to;=+9 mod 32 t;;=+10,+14 mod 32 (FSV,0)
Bzo to;=1 mod 2 t;;=1 mod 2 (FOV,FOV)(*2)
Bz1  tpj=+13,+15 mod 32 tj=+5,£7 mod 16 (FAV,FAV)(*3)
Brz  to=£547mod16  t;;=+13,+15 mod 32 (FAV,FAV)(*3)
Bos  to;=£1,+3 mod 32 ty;=+1 mod 2 (FOV,FOV)(*3)
Bza  tpj=+13,£15 mod 32 t;;=+1,#3 mod 16 (FOV,FOV)(*3)
Bas toj=£5,£7 mod 16 tyj#£13,+15 mod 32 (FOV,FOV)(*3)
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Table2 State-Following-Table

S Uoj Uy Sn S Uo; Uj Sa
Boo O 0  BooBio B O 0 (4
Bo,1 0 +1,+3 Bio Bix  +1,43 0 Bio
Bo,2 0 +1,+3 Bo,o B, *1,+3 0 Bo,o
Bo;s 0 +1,+3 B2 Bz +14+3 0 Bo2
Bo4 0 +3 Bzo Bi4 +3 0 Bzo
Bos 0 +1 Bz Bis +1 0 Bz
Bos 0 +3 B2o Bis +3 0 B2o
BO.7 0 +3 Bz_o Bl‘7 +3 0 Bz_o
Bog 0 +1 B2 Big +1 0 B2
Byo #1,+3 +1+3 Bo,o Bys +1,+3 +1+3 Bopg
By #1443 +143 B1o Bys +143 143 Bopg
B, +143 +143 B1o B,s +14+3 +1+3 Bop

Note: (*1) means at least one isn't divisible by 4; (*2) means upj_,, Ugj-1, Uyj-2, Uij_1 are not all zero; (*3)
means Ugj_2, Ugj-1, Uyj-2, Uyj—1 are all zero, and t;j#+13,£15 mod 32 means t; j=+1,+3 mod 32, or t;;=+5,+7 mod 16;
(*4) indicates that any state is a possible successor to state B, , excluding Bo o, By o.

Itis easy to verify the following by checking all the cases. As aresult, we have the following values for §., for
each §. All the following states are shown in Table 2. Finally, it will be useful to further combine the above 24
states into six as follows (see Table 3).

Table3 Simple-State-Following-Table

S Ug,j=U1, i=0 S-v—l

Co Boo YES Co,C1
Cy Bio YES C,,C3,C4,Cs
Cz Bo,1,B1,1,B2,1,B2.2 NO Ci

Cs Bo,2,B1,2,B2,0 NO Co

Cs Bo3,B0,4,B0;5.B0,6,B0,7.Bos NO Cs

Cs  B13,B14,B15B16,B17.B1g NO Cs

Cs By3,B2.4,B25 NO Co

Theorem 2. Algorithm 1 always outputs the Width-3 Joint Sparse Form for its inputs.
Proof: It isstraightforward to verify that the expansion produced by the Algorithm 2 isin fact JGF for ng, n;.
It remains to prove that this expansion satisfies the terms of Definition 2. The processis similar to that.

3.3 Efficiency of JSF;for pairsof integers

Now, Our primary task is to prove that AJHD of JSF; is 19/52. It is easy to see that GF; is at most one bit
longer than the ordinary binary expansion. As aresult, JSF; is at most one bit longer than the binary expansion of
the larger of the two integers.

Theorem 3. The average joint Hamming density among Joint 3-Sparse Form representations is 19/52.

Proof: Let state space 7={G;j|i=0,1,...,10,11}, where,

Go={ $1€Co|Sr-1€Cs5}, G1={ $1eColS1-2€Cy} G~ $:€ColS1-12Cs ,S1-22C4},
G3={$,€C1|S-1€C3} Gi={$:€Ci|S-1€ G4}, Gs={$:€Cy1[S,-1€C}
Ge={$:€CiS12(G1 G2 C))}, G={SeCy}, Ge={$:€Cs5lS, 1€C4},
Go={$:€C4|S1 12C4}, Gio={$:eCy4}, G1={$eCs}

Obviously, a stochastic process { §|n>0} output by Alg.2 takes values in a countable set 7; and is a homogeneous
Markov Chain in terms of /" (see definition in page 252 of Ref.[8]). So, let p;; denote the transition probabilities
pi (), where p; (N)=P{ S..1€Gj|S.Gi}. {pi;} forms the following transition matrix P (next page). From transition
matrix P, for any two states G;,G;e 7, the state G; is equivalent to G;, so { §,|n>0} isirreducible, and for any Gj, it is
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nonrecurrent. Therefore, the chain exists stationary distrubution{ 7;,Gje7},and limg, ., [ii pi(r;)j_,[j, where
mI

P =P{ Srnry€ Gi|Sne Gi} (Gi,Gje m=0,n>1). From the equations below, which 7 (j=0,1,...,11) satisfies'™,

o
o
o
o
o
o
o

o Mlw

o owlrh|unrlr
o

o o
o o o KlE o
o owln ©

~

Il
o
o
o
o
o
o
o

o o o o onlrR|Ewiwo o
© o o o ocolrR|oslrr o
o o oo owkrR|lK oo o
o o o o orlrR|Gwliwe o

oo oo o
oOoor o o
oOor oo o
oo oor o
o oo oo o
o o ooo o
oo ooo o
or oo o o

(70,1, 12, 1)=( 70, 71, ..., 12) (PG ).
whereg=(1,1,1,1,1,1,1,1,1,1,1,1), and the symbol  denotes matrix transposition.We get the solution
(9/130, 4/65, 1/5, 17/260, 3/65, 11/260, 3/20, 17/260, 4/65, 7/65, 4/65, 9/130).
Let its absorbing probabilities p;(n)=p{ S, G;} ,j=0,1,...,11, and initial distribution probabilities { p;} =p{ S G},
j=0,1,...,11 of the chain, then the vector of (u;,u1;)=(0,0) is the output by G;;=0,1,...,6. So AJHD is given by

11 . 1 m 11 ) 1 m
T=>lim, ., => p;(n) :anm%[_z > p™ piJ
j=7 My =7 m

n=1G el
11 . 1 m - 11 . 1 m o
=2 2. R|lim,, EZpiyj = lim,,., EZ pe
=7 G n=1 j=7 'n=1
11
=>x,.
i=7

Therefore 2=19/52. The AJHD of ~NJSF is 19/52.
4 Applicationsto ECC

The execution time of ECC schemes such as the ECDSA is typically dominated by point multiplications, In
ECDSA, there are two types of point multiplications kP, where P is fixed (signature generation), and uP+vQ, where
P isfixed and Q is not known a priori (signature verification). Using the above algorithm technique, the latter type
can be sped up by precomputing some data for points,such as 2P, 2Q, 3P, 3Q, P+Q, P+3Q, 3P+Q, 3P+3Q, and
storing some data for points such as P, Q, 3P, 3Q, P+Q, P+3Q, 3P+Q, 3P+3Q. Adapting the fast Shamir Method by
using JSF3 yields a technique which requires approximately | doublings and 191/52 general additions (on average).
In other words, that sometimes works almost 9% faster than that by using the Joint Sparse Form.

The front type can also be sped up. The simplest approach is described below. Suppose that the order r of the
private key space is less than 22. Let Q=2'P then k=a+b2'Q, thus compute k=aP+bQ, one applies Alg.1 to generate
JSF; for integers a, b. This technique of computing it by using JSF; requires approximately 2| doublings and 191/52,
a saving of approximately 331/52 general additions over the addition-subtraction method, and approximately 71/52
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over that by using the Joint Sparse Form. If the Elliptic Curves are particular curves, as Koblitz Curves, there may
the form with width-3, analogous to JSF;. So, it would be of interest to construct the form which can be applied to
Koblitz Curves.
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