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Abstract:  The Voronoi diagram (VD) of a planar polygon has many applications, from path planning in robotics 
to collision detection in virtual reality. To study the complexity of algorithms based on Voronoi diagram, it is 
important to estimate the numbers of vertices and edges of a VD. Held proves that the inner Voronoi diagram of a 
simple polygon has at most n+k−2 vertices and 2(n+k)−3 edges, where n is the number of the polygon’s vertices and 
k is the number of reflex vertices. But this conclusion holds not for a multiply-connected polygon, i.e. a polygon 
with “holes”. In this paper, by constructing a rooted tree from a VD, and based on some properties of the rooted tree, 
new upper bounds on the numbers of vertices and edges in an inner Voronoi diagram of a multiply-connected 
polygon are proved. The average numbers of Voronoi vertices and edges on the boundary of a VD are also presented. 
The result of this paper has been used to analyze the complexity of VD-based visibility computing algorithm in 
SDU Virtual Museum. 
Key words:  computational geometry; Voronoi diagram; complexity analysis; polygon; multiply connected 

polygon 

摘  要: 多边形的 Voronoi图在路径规划、碰撞检测等方面有着广泛的应用,其顶点和边数在这些应用算法的
复杂度分析方面起着重要作用.Held 证明了一个简单多边形的内部 Voronoi 图最多有 n+k−2个顶点和 2(n+k)−3
条边,其中 n 和 k 分别是多边形的顶点和内尖点数.但其结论不能适用于多连通多边形.对多连通多边形进行研
究,通过将其 Voronoi图转化为有根树,并利用有根树的性质,给出了其内部 Voronoi图的顶点和边数上界的估计,
并对Voronoi区域的边界所包含顶点和边数的平均值进行了讨论.“SDU数字博物馆”系统所采用的基于Voronoi
图的可见性算法的复杂度分析,就利用了所得出的结论. 
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1   Introduction and Motivation 

The Voronoi diagram (VD) is an important geometric structure in computational geometry. A VD records the 
regions in the proximity of a set of points. There is a rich literature on the Voronoi diagram of a set of points, as 
well as its extensions, such as high-degree Voronoi diagrams. Rather than for a set of points, the regions in the 
proximity of a set of objects, such as line segments, circular arcs and polygons, also form a Voronoi diagram[1−7]. 
The VD of a planar polygon has wide applications in pocket machining[1,8,9], path planning[10], medial axis 
computation[11], collision detection[12] and so on[13]

. The number of vertices and edges of the VD of a polygon is 
important in analyzing the complexity of VD-based algorithms. 

Much work has been done on analyzing the complexity of d-dimensional Voronoi diagrams of points[14−17]. It is 
shown[16] that the VD on n points in 2D plane has at most 2n−5 vertices and 3n−6 edges, and the average number of 
edges on the boundary of the VD does not exceed 6. For a Voronoi diagram VD(G) of a planar straight line graph G 
on n points, Lee and Drysdale show that the number of vertices of VD(G) is at most 4n−3[18]. Reference [6] proves 
that the number of vertices of VD(G) is exactly 2n+l+k−2, where l and k are the number of terminals (i.e. endpoints 
belonging to exactly one line segment in G) and the number of reflex vertices. It is also mentioned in Ref.[6] that 
the inner Voronoi diagram of a simply connected polygon with n edges and k reflex vertices realizes exactly n+k−2 
vertices and at most 2(n+k)−3 edges. In fact, according to the conclusion first given by Lee in 1982[19], the Voronoi 
diagram of a simply connected polygon has at most n+k−2 Voronoi vertices and at most 2(n+k)−3 edges. M. Held[1] 

claims that these upper bounds also hold for a multiply-connected polygon. However, we shall see that this 
conclusion holds only for the inner VD of a simple polygon, but not for a multiply-connected polygon, i.e. a 
polygon with “holes”, as shown by the following example. Figure 1 shows two kinds of polygons in solid lines and 
their inner Voronoi diagram in dotted lines. Let m and e denote the number of vertices and the number of edges of 
its inner Voronoi diagram. In Fig.1(a), n=8, k=2, m=8 and e=17, where the polygon has a flat vertex (see Definition 
1). The inequalities m≤n+k−2 and e≤2(n+k)−3 given by Held are correct. For the multiply connected polygon in 
Fig.1(b), n=10, k=6, m=18, and e=35. We have m>n+k−2 and e>2(n+k) −3. Thus, Held’s inequalities do not hold in 
this case. 

 
 
 
 
 
 

(a) Simply connected polygon                (b) Multiply connected polygon 

Fig.1  Polygons and their inner Voronoi diagrams 

We shall prove new upper bounds on the numbers of Voronoi vertices and edges of a multiply connected 
polygon. The average numbers of Voronoi vertices and edges on the boundary of a Voronoi region will also be 
studied. 

2   Basic Concepts 

2.1   Polygon 

First, some notation and definitions used in Ref.[1] are introduced. A segment is an open straight line segment. 
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A point or a segment is called an object. A simply connected polygon is a planar shape bounded by exactly one 
simple closed curve, called a boundary, consisting of segments. A multiply connected polygon is a planar shape 
bounded by several non-intersecting simple closed curves, called boundaries. 

A multiply connected polygon has more than one boundary, and there is no intersection between the 
boundaries. One kind of multiply connected polygon has an outmost boundary called a border contour, and all other 
boundaries are inside the border contour and called the island contours. An island contour is also called a pocket in 
mechanical manufacturing. The second kind of multiply-connected polygons have no outmost boundary containing 
all other boundaries (see Fig.2); the interior of such a polygon is unbounded. 

 
 
 
 
 
 
 

(a) Inner Voronoi diagram                           (b) Outer Voronoi diagram 
Fig.2  Polygons and their Voronoi diagram 

For the first kind of polygons, the Voronoi diagram partitions the interior of the border contours and the 
exterior of the island contours. The corresponding Voronoi diagram is called the inner Voronoi diagram. For the 
second kind of polygons, an outer Voronoi diagram is created. The outer VD partitions the whole plane except for 
the interior of every contour. The typical application of an inner Voronoi diagram is for modeling a pocket in NC 
path planning, and the outer Voronoi diagram is a useful representation in collision detection. Figure 2(a) shows the 
first kind of polygon in solid lines and its inner Voronoi diagram in dotted lines. Figure 2(b) shows the second kind 
of polygons in solid lines and its outer Voronoi diagram in dotted lines. 

For pocket modeling it is assumed that a border contour is oriented counter-clockwise and island contours are 
oriented clockwise. Hence, the polygon lies on the left side of each contour for a traveler going along a contour. 

Definition 1. A vertex v of a polygon is said to be reflex if its internal angle between the segments incident 
from v is greater than π; it is called a flat vertex if the internal angle is =π, and a convex vertex otherwise. 
2.2   Voronoi diagram of polygon 

We now introduce the notation of Voronoi diagrams of polygons. Let Bisector b(o1,o2) denote the locus of all 
points equidistant from o1 and o2. Let h(o1,o2) denote the set of points closer to o1 than to o2. Given a set O of 
objects in a planar domain, the Voronoi region VR(o1) of an object o1∈O is the set of all points closer to o1 than to 
any other objects in O, i.e. 

),()( 21}{1 12
oohoVR oOo −∈= I . 

Given a polygon P in a planar domain, let O be the set of vertices and edges (i.e. segments) of P. The Voronoi 
diagram of P is given by 

)()( 11
oVROVD Oo ∈= U . 

I n  the Voronoi diagram of P, the common boundary of two adjacent regions is called a Voronoi edge. The 
points where Voronoi edges meet are called a Voronoi vertex. The degree of a Voronoi vertex v is the number of 
Voronoi edges incident at v. 
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3   Previous Work 

For a multiply connected polygon P, Held[1] proves that the upper bounds of the numbers of vertices and edges 
of P’s Voronoi diagram are n+k−2 and 2(n+k)−3 respectively, where n is the number of P’s vertices and k is the 
number of reflex vertices. 

However, the proof in Ref.[1] (refer to the proof of Theorem 5.1[1]) does not consider the case of multiply 
connected polygon. The proof is based on the formula 

2|E|≥3(|F|−1)+n+k 
where |E| is the number of edge of the Voronoi diagram, and |F| is the number of faces of the planar graph 
constructed by the Voronoi diagram and the original polygon including the unbounded face. 

For multi-connected polygon the formula should be modified to 
2|E|≥3(|F|−h−1)+n+k 

where h is the number of island contours. Held’s formula therefore cannot be used for a multiply connected 
polygon. 

4   Properties of Inner Voronoi Diagram 

The following lemma is trivial. 
Lemma 1. Let j be the number of non-leaf node, and i be the number of leaf nodes in a rooted tree. Suppose 

that every non-leaf node has at least 2 children, and the root node has at least 3 children. Then 

j≤i−2. 
In particular, if every non-leaf node has exactly 2 children and the root node has exactly 3 children, then 

j=i−2. 
Definition 2. A V-ring C of an island contour B of a multiply connected polygon P is the smallest closed 

polygon form by the Voronoi edges of P such that C contains B but does not intersect B. 
For example, in Fig.3, the V-ring of the island contour p1p2p3p1 consists of the Voronoi edges v1v2, v2v3, v3v4, 

v4v5, v5v6, v6v7, v7v8, v8v9, v9v10, v10v11, v11v1. 
Definition 3. The R-ring of a reflex vertex v is the simple polygon consisting of the Voronoi edges of VR(v). 

For example, in Fig.3 (The polygon is shown in 
solid lines and its inner Voronoi diagram is shown in 
dotted lines. Solid dots stand for cutting points), the 
R-ring of the reflex vertex p1 consists of the Voronoi 
edges v1v2, v2p1, p1v11 and v11v1. Clearly, a reflex v is the 
shared endpoint of two Voronoi edges of VR(v). Note 
that the R-ring is defined only for a reflex vertex. 

Theorem 1. For the inner Voronoi diagram of a 
polygon P with h island contours, there is 

m≤n+k+2h−2. 
Proof:  The proof is trivial if h=k=0. So, suppose 

that k>0 or h>0. Then the Voronoi diagram of P is not a 
tree, since there are k R-rings or h V-rings. To make the 
Voronoi diagram a tree, we first modify the polygon by 

splitting every reflex vertex into two vertices and linking the new two vertices by a sufficiently short line segment. 

p3 p2

v6v7 v5

v4

v3

v1

v11 v2p1

v10

v9 v8

Fig.3  An inner Voronoi diagram and cutting points 
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Then we cut a Voronoi edge on every V-ring at the middle of the edge to produce cutting points (see Fig.3). In this 
way, the Voronoi diagram of P is turned into a tree, if h properly chosen edges are cut as follows: if a V-ring has one 
Voronoi edge that is not shared by other V-rings, then we can choose this Voronoi edge as the V-ring’s cut edge. If 
every Voronoi edge of a V-ring Vr is shared by other V-rings, we first choose one Voronoi edge e of Vr and find the 

V-ring  that shares e. If  has one Voronoi edge e
1rV

1rV 1 that is not shared by other V-rings, we can cut e1 and then 

cut e. Otherwise, we find the V-ring that shares e
2rV 1. Let  be V  and we repeatedly process  until we 

find a Voronoi edge of  that can be cut. The process must stop at one step for the inner Voronoi diagram of a 

polygon. 

1rV
2r 1rV

1rV

Take one Voronoi vertex as the root node and other Voronoi vertices as non-leaf nodes. All vertices of the 
modified polygon and the cutting points are leaf nodes, and all Voronoi edges are edges in the rooted tree. In this 
case the modified polygon has n+k vertices, the rooted tree has n+k+2h leaf nodes, m non-leaf nodes and e+h edges. 

Because the degree of every Voronoi vertex is at least 3[1], the root node of the rooted tree has at least 3 
children, and the other non-leaf nodes have at least 2 children. By Lemma 1, we have 

m≤n+k+2h−2. 
This completes the proof. 
Theorem 2. For the inner Voronoi diagram of a polygon P with h island contours, there is 

e≤2(n+k)+3h−3. 
Proof:  In the proof of Theorem 1, the rooted tree has n+k+2h leaf nodes, m non-leaf nodes and e+h edges. 

Since the number of nodes is one great than the number of edges, we have 
e+h=(m+n+k+2h)−1, 

e=m+n+k+h−1. 
By Theorem 1, 

e≤(n+k−2+2h)+n+k+h−1, 
e≤2(n+k)+3h−3. 

Corollary 1. For a Voronoi region V1 of the inner Voronoi diagram of a polygon P, 
1) the average number ae of the edges of V1 is less than 5; 
2) the average number av of the vertices of V1 is less than 4. 
Proof:  Because a unique Voronoi region is defined for each edge or reflex vertex, the Voronoi diagram of P 

has n+k. Voronoi regions. Since two adjacent Voronoi regions share one Voronoi edge, we have 
ae×(n+k)=2e. 

By Theorem 2, 
ae×(n+k)≤2(2(n+k)+3h−3)≤4(n+k)+6h−6, 

ae≤4+6h/(n+k)−6/(n+k). 
In a polygon with h≥0 island contours, for every island contour, the number of its vertices is greater than or 

equal to 3 and the number of its reflex vertices is also greater than or equal to 3. Therefore, n+k>6h. Then 
ae<4+(n+k)/(n+k)−6/(n+k)<5−6/(n+k). 

It follows that ae<5. 
Since, for a Voronoi region, the number of Voronoi vertices is equal to the number of Voronoi edges minus one, 

we obtain av=ae−1<4. The proof is completed. 
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If a polygon is a simply connected polygon, i.e. h=0, then we have the following theorem. 
Theorem 3. For the inner Voronoi diagram of a simply connected polygon, 
1) m≤n+k−2; 
2) e≤2(n+k)−3. 
Corollary 2. For a Voronoi region of the inner Voronoi diagram of a simply connected polygon, 
1) the average number ae of Voronoi edges on its boundary is less than 4; 
2) the average number av of Voronoi vertices on its boundary is less than 3. 
Proof:  By Theorem 3, 

ae×(n+k)=2e≤2(2(n+k)−3)≤4(n+k)−6, 
ae≤4−6/(n+k). 

Hence, ae<4 and av<3. 

5   Further Discussions 

Let NL denote the set of all non-leaf nodes of a rooted tree, and qn be the number of children of a non-leaf node 
n. 

Lemma 2. Let j, i be the number of non-leaf nodes and the number of leaf nodes of a rooted tree. If every 
non-leaf node has at least 2 children, then 

∑
∈

−−−=
NLn

nqij )2(1 . 

If the degree of every Voronoi vertex is considered, then, by Lemma 2, more precise equalities can be obtained 
as follows. 

Theorem 4. For the inner Voronoi diagram of a polygon with h≥0 island contours inside, we have 
1) ∑

∈

−−+−+=
NLn

nqhknm )2(21 ; 

2) ∑
∈

−−+−+=
NLn

nqhkne )2(32)(2 . 

Proof:  By Lemma 2, these equalities can be proved by applying the same methods for proving Theorem 1 and 
Theorem 2. 

6   Conclusions 

The number of vertices and edges of the VD of a polygon is important in analyzing the complexity of 
VD-based algorithms. It’s well known that the Voronoi diagram of a simply connected polygon has at most n+k−2 
Voronoi vertices and at most 2(n+k)−3 edges. But M. Held claims that these upper bounds also hold for a 
multiply-connected polygon[1]. 

We have shown that the upper bounds given by Held on the number of vertices and the number of edges of a 
Voronoi diagram do not hold for the inner Voronoi diagrams of multiply connected polygons, and we have proved 
new upper bounds for these cases—the Voronoi diagram of a polygon has at most n+k+2h−2 Voronoi vertices and at 
most 2(n+k)+3h−3 edges. The average numbers of Voronoi vertices and edges on the boundary of a Voronoi region 
are also presented—for a Voronoi region of the inner Voronoi diagram of a polygon, the average number of Voronoi 
edges and Voronoi vertices are less than 5 and 4 respectively. 

The result of this paper has been used to analyze the complexity of VD-based visibility computing algorithm in 
SDU Virtual Museum[12]. And inspired by the method of this paper we have also given the upper bounds of the size 
of outer Voronoi diagram of polygon[20]. 
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