ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.17, No.7, July 2006, pp.1517-1526 http://www.jos.org.cn
DOI: 10.1360/j0os171517 Tel/Fax: +86-10-62562563
© 2006 by Journal of Software. All rights reserved.

MAX(1) MARG(1)

1t 2 3

Y , 550025)
X , 010018)
X ( ) 430072)

Complexities of Renaming for Formulasin MAX(1) and MARG(1)

XU Dao-Yun*, DONG Gai-Fang?, WANG Jian®

!(Department of Computer Science, Guizhou University, Guiyang 550025, China)

2(College of Computer and Information Engineering, Inner Mongolia Agricultural University, Huhehaote 010018, China)
3(State Key Laboratory of Software Engineering (Wuhan University), Wuhan 430072, China)

+ Corresponding author: Phn: +86-851-3627649, E-mail: dyxu@gzu.edu.cn

Xu DY, Dong GF, Wang J. Complexities of renaming for formulas in MAX(1) and MARG(1). Journal of
Software, 2006,17(7):1517-1526. http://www.jos.org.cn/1000-9825/17/1517.htm

Abstract: A renaming is a function mapping propositional variable to itself or its complement, a variable
renaming is a permutation over the set of propositional variables of a formula, and a literal renaming is a
combination of a renaming and a variable renaming. Renaming for CNF formulas may help to improve DPLL
algorithm. This paper investigates the complexity of decision problem: for propositional CNF formulas H and F,
does there exist a variable (or literal) renaming ¢ such that ¢p(H)=F? Both MAX(1) and MARG(1) are subclasses of
the minimal unsatisfiable formulas, and formulas in these subclasses can be represented by trees. The decision
problem of isomorphism for trees is solvable in linear time. Formulas in the MAX(1) and MARG(1), it is shown that
the literal renaming problems are solvable in linear time, and the variable renaming problems are solvable in
quadratic time.
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1 Introduction

A literal is a propositional variable or a negated propositional variable. A clause C is a disjunction of literals,
C=(Lyv...vLy), and sometimes written as a set of literals, C={Ly,...,Ly}. A formula F in conjunction normal form
(CNF) is aconjunctive of clauses, F=(CyA...AC,), and sometimes written as a set of clauses, {C,,...,C,} or alist of
clauses, F=[C;,...,C,]. var(F) is the set of variables occurring in the formula F and lit(F) is the set of literals over
the variables of F. Let F be a CNF formula. A renaming of F is a function mapping propositional variable x to x or
—x for xevar(F), a variable renaming of F is a permutation over var(F), and a literal renaming of F is a
combination of a renaming and a variable renaming of F. For CNF formulas H and F, a homomorphism ¢ from
formula H to F is a mapping from lit(H) to lit(F) and it preserves complements and clauses, i.e., gp(—L)=—¢(L) for
Lelit(H), and ¢(C)eF for every clause CeH, where lit(:) is the set of literals over variables occurring in the
formula, and ¢ is an isomorphism from formula H to F if ¢ is a homomorphism from formulaH to F and ¢ is a
bijection. Clearly, if formula H is homomorphic to formula F, then the unsatisfiability of H implies the
unsatisfiability of F, and if formulaH isisomorphic to formulaF, then H and F have the same satisfiability.

We are interested in isomorphism of CNF formulas for motivations of constructing some more efficient
algorithms for satisfiability and simplifying the proofs of unsatisfiable formulas*?. In Ref.[1], Krishnamurthy
illustrated the power of symmetry for propositional proof systems. He added to the resolution calculus the rule of
symmetry and gave short proofs for some hard formulas. For example, the pigeon hole formulas have a proof of
polynomial size in this extended calculus. The rule of symmetry allows the following inference: If a clause f has
been derived from a set of clauses F and ¢ is a permutation over the set of variables occurring in F, then the clause
o(f) can be inferred as the next step in the derivation. Further interesting results can be found in Urquhart's paper'?.
We call a permutation of variables a variable renaming. Instead of a permutation of variables, we can make use of a
more general renaming, namely a so called literal renaming or isomorphism. That means we have a permutation of
variables and additionally variables can be simultaneously replaced by its complements. More formally, for
formulas H and F with var(H)=var(F), a variable renaming ¢ is a one-to—one mapping ¢: var(H)—var(F) and a
literal renaming ¢ is a one—to—one mapping ¢: lit(H)— lit(F) with o(—x)=—¢@(x) for any variable x. The literal
renaming of CNF formulas is the isomorphism or symmetry of CNF formulas for satisfiability.

A deeper understanding of the structures of CNF formulas may help to improve the DPLL-algorithm. In the
splitting tree of the DPLL-algorithm, if two formulas are labelled at the different nodes, and one of the formulas can
be mapped to the other one by an isomorphism, then we can replace one of the formulas by the empty clause and
continue with the remaining formula. By variable (or literal) renaming, we can decrease the size of the splitting tree
in the DPLL-algorithms for some hard formulas. Formally, in the splitting tree of the DPLL-algorithm, if formula F,
at one node u can be mapped to formula F, at the other one node v by a variable (or literal) renaming ¢, then we can
replace F, by the empty clause, and continue with the remaining formula. We have shown that the DPLL-algorithm
with such a symmetry rule has short proofs for the pigeon hole formulas with n+1 pigeons and n holes, which is a
class of hard formulas, and it need only O(n®) nodes in the splitting tree!®.

A CNF formula F is minimal unsatisfiable (MU) if F is unsatisfiable and for any clause feF, F—{f} is
satisfiable. In Ref.[4], C. H. Papadimitriou and D. Wolfe showed that for every formula F one can construct a
formula f(F) in polynomial time such that F is satisfiable if and only if f(F) is satisfiable, and F is unsatisfiable if
and only if f(F) is minima unsatisfiable, i.e,, an unsatisfiable formula can be transformed into a minimal
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unsatisfiable formulain polynomial time. The deficiency of CNF formula F is the difference between the number of
clauses and the number of variables of F. It is well-known that the deficiency of MU formula is more than one>®.
For k>1, let MU(K) be the set of minimal unsatisfiable formulas with deficiency k. The decision problem for minimal
unsatisfiable (MU) formulas is DP-completel®. Fortunately, for fixed k, whether or not a formula belongs to MU(K)
can be decided in polynomial time!®. It has been proved in Ref.[6] that for any kt>1 and any formula FeMU(t),
there exists aformula H in MU(k) and a homomorphism ¢ from H to F such that ¢(H)=F. Moreover, for fixed k,t>1,
the formula H and the homomorphism ¢ can be constructed in polynomial time. For a class C of CNF formulas we
have considered the problems:

Problem: Var—C(Lit—C,Hom-C)

Instance: H,FeC

Query: Does there exist a variable renaming (literal renaming, homomorphism) ¢ from H to F: ¢(H)=F?

We call the problem Var—C(Lit—C,Hom-C) the variable renaming (resp. literal renaming, homomorphism)
for C.

We investigate the above mentioned problems for the class of minima unsatisfiable formulas and various
natural subclasses. The classes considered first are minimal unsatisfiable Horn formulas (Hom-MU) and MU
formulas with fixed deficiency k. Additionally, for the homomorphism problem we consider the class MU(k,t). The
class MU(kt) is the set of pairs of formulas (H,F) where HeMU(K) and Fe MU(t). Since a renaming preserves the
number of clauses, these problems are not of interest for MU(k,t). For fixed k and t, the problem Hom-M(k,t) has an
instance pair of formulas HeMU(k) and FeMU(t). The question is whether there is a homomorphism ¢ such that
o(H)=F.

The graph isomorphism problem consists in deciding whether two given graphs, G;=(V1,E;) and Gy=(V,,Ey),
are isomorphic, i.e. whether there is a bijective mapping ¢ from V; to V, such that for any u,veVy, (u,v)eE; if , and
only if (¢(u),(v))eE,.

We write A<,B if the class A is a polynomial one reducible to the class B. A=;B is an abbreviation for A<,B and
B<,A. We use Gl (resp. UGI) to denote the graph isomorphism problem for directed (resp. undirected) graphs. It is
easy to prove Gl=,UGI. Thus, we use Gl to shortly denote the graph isomorphism problem for directed or
undirected graphs. The graph isomorphism problem GI is known to be in NP. But it is an open problem whether Gl
is NP—complete or solvable in polynomial time!®.

In Ref.[10], we have proved the following results.

(1) For k=1, the variable (and literal) renaming problems for formulas in MU(k), even if Horn formulas in
MU(1), are equivalent to the graph isomorphism problem.

(2) For k=1, the homomorphism problem for formulas in MU(k), even if Horn formulas in MU(1), is
NP-complete.

(3) For k, t>1, the homomorphism problem for MU(k,t) is NP-complete.

In fact, the variable (or literal) renaming of CNF formulas describes some symmetry properties of formulas. By
the symmetry properties of formulas, we can short the length of proof of satisfiability for formulas. However, we do
not know exactly the complexity of the graph isomorphism problem. So, it is significant for investigating
polynomial decidability of the variable (or literal) renamings for some subclasses of CNF.

In order to see whether the problems will be easier for more restrictive classes, we investigate maximal and
marginal formulas. A MU formula F is maximal if adding a new literal to any clause of F results in a satisfiable
formula. That is strongly minimal unsatisfiable formula defined in Ref.[5]. MAX is the set of maximal MU formulas
and MAX(k)=MU(K)\nMAX. A MU formula F is marginal if removing an occurrence of a literal from F resultsin a
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non-minimal unsatisfiable formula. MARG is the set of marginal formulas and MARG(k)=MU(K\"MARG.
Intuitionally, a formula F in MU(k) has a formula F,,, in MARG(K) as ‘lower bound’, and a formula Fy, in MAX(K)
as ‘upper bound’ for literals. The decision problems for MAX and MARG are known to be DP-completel*?,
whereas the problems for fixed k are in P because the problem for MU(K) is solvable in polynomial time.

In this paper, we will investigate variable renaming and literal renaming for formulas in MAX(1) and MARG(1).
We consider the following problems:

Problem: Var-MAX(1) (Var-MARG(1))

Instance: H,FeMAX(1) (MARG(1))

Query: Does there exist a variable renaming ¢ such that o(H)=F?

Problem: Lit-MAX(1) (Lit-MARG(1))

Instance: H,FeMAX(1) (MARG(1))

Query: Does there exist aliteral renaming ¢ such that p(H)=F?

We will prove that the problems Var-MAX(1) and Var-MARG(1) are solvable in quadratic time, and the
problems Lit-MAX(1) and Lit-MARG(1) are solvable in linear time.

2 MU(1) Formulas

Let F=[Cy,...,C,] be a CNF formula. The integer n, the number of clauses in the formula F, is denoted by
#cl(F). var(F) is the set of variables occurring in formula F and #var (F) is the number of variables of the formulaF.
lit(F) is the set of literals occurring in formula F. The length (or size) of formula F is the number
of occurrences of literals, i.e. chp|”t(c)| , denoted by |F|. A Horn clause is one with at most one positive literal.
A Horn formulais a conjunction of Horn clauses. We denote the number of positive (resp. negative) occurrence of x
in F by pos(x,F) (resp. neg(x,F)), and write occ(x,F)=(pos(x,F),neg(x,F)).

Definition 1. (Representation matrix of a CNF formula)

Let F=[Cy,...,Cy] be a formula with n variables xy,...,X, in CNF(n,m). The nxm matrix(a;) is called the
representation matrix of F, where

+ % €C,
a =4-, X eCj
0, X,—X eCj

Sometimes we write blank for ‘0’.

Definition 2 (variable renaming, renaming, literal renaming).

Let H and F be formulasin CNF and var(H)=var (F)

(1) (Variable renaming) A mapping ¢: var(H)—var(F) is termed a variable renaming from H to F, if ¢ isa
permutation over var(H) such that ¢(H)=F.

(2) (Renaming) A mapping ¢: lit(H)—lit(F) istermed arenaming if for all Lelit(H) we have ¢(L)=L or —L and
o(=L)==¢(L). (We assume ——L=L).

(3) (Lit_renaming) A mapping ¢: lit(H)—>lit(F) is termed a literal renaming over lit(H) if ¢ is a permutation
over lit(H) and for all Le lit(H) we have o(—L)=—g¢(L).

Please note that aliteral renaming is the combination of avariable renaming and a renaming.

Definition 3 (minimal unsatisfiable formula).

Let F be a CNF formula. F is called minimal unsatisfiable if

(1) F isunsatisfiable and

(2) for any clause feF, F-{f} is satisfiable.
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For a formula Fe CNF(n,n+K), the integer k is called the deficiency of F. For minimal unsatisfiable formulas,
we always have k=112%, We denote
MU (K)={ F e CNF(n,n+K)|F is minimal unsatisfiable}
and
MU={F|F is minimal unsatisfiable}= UkleU (k) .
In Ref.[6], it is well-known that for FeMU(1) there exists a variable x such that occ(x,F)=(1,1), and the
minimal unsatisfiable Horn formulas are in MU(2).
The following theorem represents that MU(1) is an important subclass of the minimal unsatisfiable formulas.
Theorem 11*2 (splitting theorem).
Suppose FeMU(K), k>1, and for every variable x, occ(x,F)>(2,2). Let F=[(xvfy),...,(xvfs),Bx,C,B_x (—Xvdy1),
...,(—xv@y)] where B,, C, B_, are some formulas without occurrences of x and —x, such that
Fe=lfy. f6BuCleMU(KY), F=[ds,...,0B-xCleMU(K )
for some k, and k_. Then we have 1<k,,k_,<k.
The pair (FyF_x) of formulasis called the splitting pair of F on variable x.
In Ref.[6], G. Davydov et al. introduced the complete representation of formulasin MU(1), basic matrices.
Definition 4'® (basic matrix).
The following matrix with n rows and (n+1) columns defined inductively istermed a basic matrix:
(1) (+-)is abasic matrix.
(2) If By is abasic matrix, then the following matrix is basic.

H
b -
where b is avector with (by);e{0,+} and at least one +-sign.

(3) If B, isabasic matrix, then the following matrix is basic.

+ b
o)
where b, is a vector with (b,);e{0,-} and at least one —sign.
(4) If both B, and B, are basic matrices, then the following matrix is basic.

B O
b b
0 B

where b, is a vector with (by);e{0,+} and at |east one +-sign, and b, is a vector with (b,);e{0,-} and at least one
—-sign.

The basic matrix is a complete representation of formulas in MU(1), which means that Fe MU(2) if and only if
the representation matrix of F is a basic matrix up to a permutation of rows and columns®®.

Definition 5 (Representation graph of aformulain MU(2)).

Let F be aformula with n variables in MU(1) and M=(mj)n«n+1) iS the representation matrix of F. The directed
label graph G=(V,E,) is termed the representation graph of F, where V=(1,2,...,n,n+1), E={(i,j)|m=+ and m=—
for some 1<k<n,1<i,j<(n+1)} and A(i,j)=K if mg=+ and my=—.

Example 1. The formula F=[(X;vXz),—X1,(—X2vX3),(X4VXs),(—Xav—X4vXs),—Xs] is in MU(1). The representation
matrix M and the representation graph G of F are respectively.
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3 Renaming Problemsfor Formulasin MAX(1)

We know that the isomorphism problem for trees is decidable in linear ti me!*3. We will show that formulasin
MAX(1) and MARG(1) can be associated to trees in this section and next section.

In this section, we investigate the complexities of variable renaming problem and literal renaming problem for
formulas in MAX(1). We prove that the variable and the literal renaming problems for formulas in MAX(1) are
solvable in quadratic time, and the literal renaming problem for formulasin MAX(1) is solvable in linear time.

Lemma 1. Let F be aformula with n variables in MAX(1), then there is a unique variable x such that pos(x,F)+
neg(x,F)=n+1.

Proof: Induction on n. It is clear for n=1. For n>1, let M be the basic matrix of F. Then, M is one of the

B, O
b o)y
2 0 B,

following basic matrices:

where b, is a vector with (b;);=+, and b; is a vector with (b,);=—. From the structure of the above matrices, we see
that only variable x corresponding to the row containing b, (or b,) satisfies the condition: pos(x,F)+neg(x,F) is equal
to the number of columns in the matrix. By the induction hypothesis, we get a unique variable x for which
pos(x,F)+neg(x,F)=n+1. O

We call the variable x in Lemma 1 the axis variable of F. Note that the axis variable x is the unique variable
occurring in every clause of F.

Let x be the axis variable of F. Then F is of the forms [(xvfy),...,(xvfp),(=Xv@y),...,(=xvQy)], where
p+g=#var(F)+1 and F|,=[fy,....f;] and F|_=[0a,...,94], where F|,=F(x=0) and F|_,=F(x=1). Clearly, if p,g>1, then
(FlxF]-x) is the unique splitting pair of Fonx, both F|, and F|_ are maximal, and var (F|,)~var (F|_,)=J. If p=1 and
g>1, then F|_, ismaximal. If p>1 and g=1, then F|, is maximal.

Based on Lemma 1, aformulaF in MAX(1) can be associated only to abinary tree Tg.

Example 2. The formula F=[(XpvXovXs),(—XVvXovXa),(—XovXaVvXa),(—XoV—X3vXa),(—XaVXs) ,(— X4V —X5VXg),
(—Xgv—Xsv—Xg)] isin MAX(1). The representation matrix Mg and the binary tree T associated to F are respectively.

o YN
Lol NN
2 T ENENE N\
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In the binary tree Tg, labels at internal nodes correspond to variables in F, and the order of axis variables
during the recursive splitting of the formula corresponds to the order searching internal nodes of T in middle root
search. A leave of T corresponds to a clause of F, and the path from the root to the leave is associated to this
clause. The edge from internal node to its left child is associated to a positive occurrence of the variable
corresponding to the internal node, and the edge from internal node to its right child is associated to a negative
occurrence of the variable corresponding to the internal node. For example, let 3, be the right child of node 3, then
the path from the root to 3; corresponds to the clause: (Xgv—Xov—Xa).

Theorem 2. The problem Var-MAX(1) is solvable in quadratic time.

Proof: Let F and H be two formulas in MAX(1). If #var(F)=#var(H), then F cannot be renamed into H. If F
can be renamed into H, then the axial variable x; of F must be mapped to the axial variable x, of H, and pos(x;,F)=
pos(x,,H). Finally, we split F and H on axial variables respectively and apply the induction to the splitted formulas.

We now consider the following algorithm.

Algorithm 1. (var_renaming for MAX(1))

Input: FormulaF and H in MAX(2).

Output: Yesor No.

procedure Var_ren(F,H);

begin

ng.=#var (F); np:=#var(H);

if nezny, then return No;

if (n==1) then return Yes;

x;.= the axial variable of F;

Xn:= the axial variable of H;
posy:=pos(x,F); negr:=neg(x,F);
P0SH:=POS(Xx,H); negn:=neg(x,,H);

if pospos, then return No;

if pos=1then call Var_ren(F [, ,H |, );
if neg=1then call Var_ren(F |, ,H |, );

if (Var_ren(F |, .H|,)=Yes)& (Var_ren(F |, ,H |, )=Yes)

—X 2
then return Yes;
return No;

end;

Let F and H be formulas with n variables in MAX(1), and let x and y be the axial variables of F and H,
respectively. It is easy to prove that: There exists a var_renaming ¢ with o(F)=H if and only if ¢(x)=y, pos(x,F)=
pos(y,H) and there are two variable renamings, ¢, and ¢_, with ¢.(F|,)=H|, and ¢_(F|_,)=H|_,. Therefore, there
exists a variable renaming ¢ with ¢(F;)=F, if and only if Algorithm 1 returns Yes. Please note that we can compute
the axial variable x of F and the pair (F|yF|_-yx) in O(n) time. The number of recursive calls is O(n). Thus, the
complexity of Algorithm 1 is O(n?), where n=#var (F). Therefore, the problem MAX(1)-VR is solvable in quadratic
time. O

Note in variable renaming that we must consider the difference of positive and negative literals, which
corresponds to the difference of the left and right children of internal node. Thisis why we do not apply directly the
method of tree isomorphism.

Theorem 3. The problem Lit-MAX(1) is solvablein linear time.
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Proof: Based on Lemma 1, we can associate a MAX(1) formula F with n variables to a binary tree Tg with n
internal nodes and n+1 leaves, and each internal node has exactly two children. Note in literal renaming that the
sign of literals can be ignored. Let F and H be formulas with var(F)=var(H) in MAX(1). We associate F and H to
binary trees T and Ty, respectively. Thus, there exists a literal renaming ¢ from H to F if and only if Ty is
isomorphic to Tg. We know that the isomorphism problem for binary trees is solvable in linear time. Therefore, the
problem Lit-MAX(1) is solvable in linear time. a

Corollary 1. The homomorphism problem for formulas in MAX(1) is solvable linear time.

Proof: Let F be aformulain MAX(1). By the induction on n=#var(F) and the basic matrix, it can easily be
proved that: For any different clauses f and g, there exists exactly one pair of complementary literals, L and —L,
such that Lef and —L eg. Thus, any homomorphism for aformulain MAX(1) must be a literal renaming. O

4 Renaming Problemsfor Formulasin MARG(1)

In this section, we investigate the complexities of variable renaming problem and literal renaming problem for
formulas in MARG(1). We prove that the variable renaming problem for formulas in MARG(1) is solvable in
quadratic time, and the literal renaming problem for formulasin MARG(1) is solvable in linear time.

Based on the characterization of basic matrix of formulasin MARG(1), it is easy to prove the following lemma.

Lemma 2. Let F be aformulain MARG(1). Then, for every variable xe#var (F) we have occ(x,F)=(1,1).

By Lemma 2, we can associate a formula F to a directed graph Gg with labels, which is the representation
graph of F. Based on the basic matrix of F and the induction, we can show that G has no cycle and the resulting
undirected graph by deleting the directions of edgesin Gr isatree.

Example 3. The formula F=[(X;vX3VXs),Xa,(—X1V—X2),X4,(—X3v—Xg),—Xe] 1S iIN MARG(1). The representation
matrix M and the representation graph G of F are respectively

123456

1+ - 5
2 + -
3| + - /\lz
4 <«—4—
+_
5(+ -

Theorem 4. The problem Lit-MARG(1) is decidablein linear time.

Proof: Let F=[Cy,...,Cy.1] be aformulawith variables xy,...,x, in MARG(1). By Lemma 2, every variablein F
occurs exactly once positively and once negatively. Then, the representation graph Gg of F contains exactly n edges,
and the different edge has different labels. Based on the basic matrix of F and the induction, we can show that Gg
has no cycle and the resulting undirected graph by deleting the directions of edges in Gr is a tree. So, we can
introduce a new node at each edge to replace the label on the edge. Formally, we define an undirected graph Te=(Vg,
Er), where Ve={Xy,... Xn,C1,...,Cn+1} @Nd Ex={(Ci,X), (X)X Ci,—Xc€ Cj,1<k<n,1<i,j<n+1}.

Thus, Tk is atree, and we have the fact: deg(x,)=2 for every 1<k<n. It shows that every vertex X is an internal
node of Te.

Let H and F be formulas with var(H)=var(F) in MARG(1), and let Ty and Tr be the associated trees,
respectively. By the structures of Ty and T, we have that there exists a lit_renaming ¢ with p(H)=F if and only if
Ty is isomorphic to Tr. Note that both Ty and Tr contain 2n+1 nodes. Therefore, the problem Lit-MARG(1) is
decidable in O(n) time, since the tree isomorphism problem is solvable in linear time. a

Theorem 5. The problem Var-MARG(1) is decidable in quadratic time.
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Proof: Let F=[Cy,...,Ch1] be a formula with variables xg,...X, in MARG(1). Similar to the proof for the
problem Lit-MARG(1), we now associate F to an undirected graph T=(V,E) in O(n?) time as follows:

(1) We define V =V, UV, UV, UV, UV, , UV, UVy, where Vig={Xy,....Xn}, Va={C1,....Ce1}, Vi =
(XX} Vo = {0 X}, Vo, =Y Y2 Ve Y2, Vo, ={Z 2 2, 2, and V) ={c 62,
2 1, we have |V|=2n%+9n+3.

1
C Cn+1

crCrats

(2) We define E=E,UE UE UE,UE;, where E,={(c,%),(%.,C;)|X €C,—% € C;, 1<ksn, 1<i,j<n+1},
E ={(x,y)|1<k<nl<i<n+2}, E ={(x,Z)|1<k<nl<i<n+1, E,={(c.c)(c.c?)|1<k<n+1} and
By ={(% %), (%o %) 1<k <}

Based on the proof of Theorem 4 and the construction of T, T is atree and we have

(a) deg( x; )=n+4 for every 1<k<n;

(b) deg( x, )=n+3 for every 1<k<n;

(c) deg(x)=2 for every 1<k<n;

(d) 3<deg(c)<n+2 for every 1<k<n+1,;

(e) deg(v)=1 for every veV.,

var+

UV UVy .
Our idea is to identify positive literals and negative literals, and to distinguish nodes corresponding to the

variables and nodes corresponding to clauses by different degrees of vertices.
Let H=[Cy,...,Chiq] and F=[ C[,..., C/.;] be formulas over variables x;,...x, in MARG(1), and let Ty and Tg the

associated trees. By the structures of Ty, and Tg, we will show that there exists a variable renaming ¢ with ¢(H)=F if
and only if Ty isisomorphic to Te.

(=) Suppose that there exists a variable renaming ¢ with ¢(H)=F. We have a permutation 7, over {1,...,n} and
apermutation 7 over {1,...,n+1} suchthat ¢(x)=x, o, forlsk<nand ¢(C)=C', for l<i<n+l.

By the construction of Ty, we have that for any variable x,, xc€C; and —xeC; if, and only if (c,x;),(X.,C;),

(% %) (%, %) areedgesin T.
Now we define an isomorphism ¢ with ¢(T,)=T as follows:

(D) dX) =X 00+ PX) =X 9+ P(X) =X o (L<ksn);

(2) ¢(c)=c, g 1<isn+l;

(3) #(¥) =y for (1sksn) and (1<p<n+2);

@ #(z) =12 for (1<ks<n) and (1<p<n+l);

(5) ¢(c”)=c l<i<n+land p=12.

(<) Let ¢ be an isomorphism with ¢(T,)=Tg. By the difference of degrees of nodes, we have that ¢(Vyar)=Vvar,
PMVaw) =Vear s #Moar) =Vigr » @A $(Ve)=Vai. Therestriction ¢, isthe desired variable renaming, since x.eC; and
—x¢€C; if, and only if there is a unique path, GXx"xx.c; , from ¢; to ¢; through x,. Please note that Ty, contains 3n+

9n+3 nodes. Thus, the problem Var-MARG(1) is decidable in O(n?) time, since the isomorphism problem for treesis
solvablein linear time. O

5 Conclusions

The variable (or literal) renaming of formulas is helpful for improving proof system and DPLL algorithm.
From Refs.[3,10], we know that the variable renaming and literal renaming problems for formulas in MU(1) are
related closely to the graph isomorphism problem. So, it is significant for investigating solvable variable and literal
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renaming problems in polynomial time. In this paper, we investigate variable and literal renaming problems for two
subclasses, MAX(1) and MARG(1), of minimal unsatisfiable formulas. We have proved that the literal renaming
problems for formulas in MAX(1) and MARG(1) are solvable in linear time, and the variable renaming problem for
formulasin MAX(1) and MARG(1) are solvable in quadratic time.

For k>2, it is dtill open whether the variable and literal renaming problems for formulas in MAX(k) and
MARG(K) are solvable in polynomial time.
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