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Abstract:  A special quantum error correction scheme is proposed to protect the flow of transmitted quantum 
information in complex channels. Based on the derived syndrome, an algorithm is devised for the construction of 
the called quantum event-error correction code, which can correct simultaneously random and burst quantum errors. 
Moreover, the constructed code can detect the length, the number and even the exact location of the occurring errors 
in the listed error event. 
Key words:  quantum event error; stabilizer; CSS code; quantum error correction code; quantum information 

摘  要: 为了同时检测量子随机错误和量子突发错误,提出了量子事件错误检错码.通过利用构造的错误图样,
该码不但检测并纠正错误发生的事件类型,而且可以检测到错误发生的种类、随机错误的数量、错误发生的长
度甚至错误发生的位置. 
关键词: 量子事件错误;稳定子;CSS码;量子纠错码;量子信息 
中图法分类号: O157   文献标识码: A 

Quantum information has stimulated much interest with rapid development of quantum communication and 
quantum computation. An important issue in quantum information is quantum error prevention[1], detection[2] and 
correction[3,4]. So, the quantum error-correcting code is now an active area of research[5]. Since the pioneer 
investigations were proposed to defend decoherence in entangled states[6,7], many works considering to construct the 
quantum error correction codes(QECC) have been presented[8,9]. These codes, which are means of storing 
information in a certain set of qubits in such a way that it can be extracted even though a subset of the qubits have 
been changed in an unknown way, are fundamental parts in the investigation of the quantum information and 
quantum computing. It is an optimal candidate in quantum information for quantum error-correction, which 
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compensates effects of quantum noise by introducing redundancy like the classical error correction code. 

While the possibility of correcting decoherence errors in entangled states was discovered[6,7], many works 
considering QECC have been presented[8−13]. All these investigations may be divided into two categories, i.e., one is 
to construct codes for correcting quantum random errors[8−11] and the other is to design codes for defending quantum 
burst errors[12,13]. In the first category, errors happen in some random positions. To correct this kind of errors, the 
quantum error-correction code is designed to maximize the minimum number of corrected singular error symbols. 
Currently, such a category of errors has been intensively investigated, and hence many good quantum 
error-correction codes have been proposed with big error-correcting ability, which are decided by the weight of the 
constructed code. However, in the second category, errors happen in consecutive qubits with a fixed error length d. 
To correct this kind of errors, the burst error correction code is proposed to maximize the minimum length of 
corrected errors, which has a character of correcting errors with a fraction of fixed length. 

While random errors and burst errors occur simultaneously in a quantum code, detection and correction of 
errors are more complex. A simple way is to divide these errors into M separated (single) error events. Each event 
can be described by a binary vector in which the first and last bits are always “1”s. Since there are three basic 
errors, i.e., the bit flip error, the phase error and the mixed error of bit flip and phase errors[14] occurring possibly to 
a qubit, quantum error events may also be divided into three kinds, i.e., quantum bit flip error event, quantum phase 
error event and quantum mixed error event. By far, there is no research on how to correct quantum event error by 
the quantum approach. To correct quantum event errors in a quantum code, a new code which is called as quantum 
event-error correcting (QED) code is first investigated in this paper. 

1   Descriptions of Quantum Event Errors 

In a two-dimension Hilbert spaceH⊗2, a qubit can be denoted byΨ〉=α0〉+β1. Since disturbance of the 
environment, errors may occur to such a qubit. Let ε be an arbitrary quantum error with error operation in 
{Ei:i=1,2,…,n}occurring to the qubit ψ〉, where 
  (1) YeZeXeIeEi 3210 ˆˆˆˆ +++=

)3,2,1,0(ˆ =κκe  are unit vectors, and operators X=σx,Z=σz and Y=−iXZ denote the bit flip error, the phase error and  

the mixed error of bit flip and phase error. 
The quantum bit-flip error event (QBEE) can be described as, 

  (2) ),,...,,( )(21 xelx aaae =

where  and a)(1 xelaa = i∈{0,1} for1 )( xelk << , and l(ex) denotes the length of ex. If ai=1, the corresponding qubit 
subjects to X error, otherwise there is no error occurring to the i-th qubit. Suppose there is a QBEE occurring to a 
quantum code, the corresponding quantum bit-flip event error can be described by an n-dimensional vector, 
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Clearly, there are at most n−l(ex) possible event errors which start at positions i corresponding to ex. 
Mathematically, the QBEE, i.e., ex, can be obtained by the mapping ex=ϕ(α) that transforms α∈{0,1}n to ex by 
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In a similar way, one can describe the quantum phase error event (QPEE) with the length of l(ez) by 

 with the corresponding quantum phase event error expressed by),,...,,( )(21 zelz bbbe = )0,...,0,,0,...,0()(
1

, 321321
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Based on ex and ez, the quantum flip-phase error event (QFEE) may be described by two binary vectors of the 
length of l(ey) as  where  and a),|(),...,,|,...,,( )(21)(21 zxelely eebbbaaae

yy
== 1)()(11 ====

yy elel baba k=bk∈{0,1} 

(1≤k≤l(ey)).Define the corresponding error by 
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In terms of Eq.(1), errors rising ex, ez and ey in a quantum code may be represented by unitary operators Xα, Xβ, 
21 εε ZX , respectively, where ε1,ε2∈{α,β}. Suppose a basis }2,...,1,}1,0{: nn

ii ivv =∈{  in H⊗n, then one has 

αα += ii vvX , and i
v

i vvZ i ββ ⋅−= )1( . 

The error operator of QBEE, QPEE and QFEE may be generalized by p(E(m))=(−1)λXαZβ where λ∈{0,1}. 
Obviously, QBEE, QPEE and QFEE are especial cases of E(m) corresponding to β=0,α=0, and α=β respectively. In 
addition, there is a more general event error with α≠β. Thus, the quantum error event may be generalized by the 
following vector, 
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2   Construction of Quantum Event Error Correction Code 

In this section, we show how to construct the stabilizer quantum code for event-error correction. Since a 
quantum error correction code can detect both quantum bit-flip event errors and quantum phase event errors at the 
same time and location (errors corresponding to QFEEs occur in this case), only QBEEs and QPEEs need to be 
considered in the following sections. 

2.1   Syndrome of quantum event-error detection code 

The particular code we wish to present may be best described by using the stabilizer formalism[14], which 
provides an elegant and simple way to understand the process of the encoding operations. 

A stabilizer quantum code ((n,2n−k)) is defined to be a vector space Vs stabilized by a subgroup S of Pauli group 
Gn on n qubits, such that S(−I∉S) have k independent and commuting generators denoted by {gi:i=1,2,…,k}. There 
is a good way of expressing these generators by exploiting the check matrix H which is a K×2n matrix denoted by  
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where αi,βi∈{0,1}n,(1≤i≤k), and the i-th row is the generator gi described in the same way as in Eq.(5). 
Consider a stabilizer S={gi:1≤i≤k} with k generators, and the event error operator,  
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ijji eeee = , where αi=0 or βi=0. Then a set of vectors x∈Hn, which satisfies xxei = ,  

forms a (n−k)-dimensional stabilizer quantum code Q. 
Suppose a quantum event-error correction code Q be described by a (k1+k2)×2n check matrix H with k=k1+k2. 

Especially, based on Eq.(6), the check matrix can be expressed as, 
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Theorem 2.1. H is a totally singular matrix if and only if  
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Let L be the length of the longest quantum error event in E, i.e., . To correct any event 
error

)}(),(max{ zx ElElL =

)(, ejiρ , the linear combination of the columns of H from i to i+L−1, from n+i to n+i+L−1 and the event 

error )(, ejiρ  has to be nonzero. Especially, to correct an event error such that Eq.(5) for arbitrary m and , the 
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In matrix form, can be rewritten as, m
is
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The syndrome is a k1+k2  dimension vector, which shows the error event type m and the location i of the 
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However, to correct errors corresponding to more error events, one has to design the compositional syndrome. 
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denote columns of the check matrix H. A syndrome S for general quantum event errors from the error matrix  
may be composed as 

Ξ

  (16) 
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The syndrome S is an MKL matrix. Denote rows of S from m(k−1)+1 to mk by Sm, which consists of the syndrome of 
event error type m calculated by using check matrix H. By using the similar trick to analyze the syndrome  of 
an error event, one can detect lengths, numbers, and locations of the occurring random errors corresponding to 
multiple error events. 
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2.2   An algorithm for construction of quantum event-error correction codes 

In this subsection, we investigate how to construct a quantum event-error correction code by exploiting the 
syndrome S. Obviously, to construct such a code, the check matrix which gives rise to a nonzero syndrome  for 

arbitrary error event  needs to be yielded explicitly. In the following we present an approach for constructing 
such a check matrix. 
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whose starting condition is labeled by an arbitrary matrix  such that  and , and the 

transition (edge) condition is labeled by h

0ψ 1)( 0
0 =Ξ
ψε S 1)( 0 =Ξ ψϖ

k from each existing matrix ψ0 to any existing matrix ψk. Since all 

matrices ψk(k=0,1,…,n−L) satisfy Eq.(19), the check matrix H~  may be obtained by walking through the FQCM and 

  



 1138 Journal of Software 软件学报 Vol.17, No.5, May 2006   

 
reading off the edge label hk in turns. 

Many paths may be chosen in the FQCM for completing the check matrix, i.e., many hk s can be chosen at each 
step for creating ψk. Since paths that produce a large number of different syndromes do not always result in good 
codes because of higher probability of producing zero elements of the vector  in syndrome S, how to choose an 
optimal h
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k becomes an important problem. Consider a path of length n, and denote the set of positions of all 
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In a similar way, the occurring probability of three or more quantum error events can be obtained. Then the total 
probability of producing a zero s of syndrome S is 
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The condition for the optimal hk is to minimize pmiss. 
Based on the above theory, an algorithm comes for the construction of quantum event-error correction code 

with minimizing the probability of producing zero element of s in syndrome S. 
An algorithm for finding the check matrix H: 
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0 by V. 
Step.2 Select randomly a matrix ψ0 from V. 
Step.3 Let H0=ψ0. 
Step.4 For 1≤k≤n−L repeat: 
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It is necessary to remark that the 2n-dimension vector  satisfying  forms the 

quantum event-error detection code Q. These vectors are generated by , where  
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3   Discussion and Conclusion 

A quantum event-error correction scheme is put forward for correcting any event errors from the listed error 
event sets. And, the process of the construction is introduced based on the syndrome inferred in this paper. Since the 
designed quantum code can easily point out the exact location of single errors symbol by utilizing the syndrome, it 
may be more convenient to use such a code to correct these different errors in the complex quantum channels. In 
fact, it is easy to prove that the code can detect random quantum errors with an upper bound 

, where is the length of the error event and  is the size of the listed 

error event. For the other hand, the code can detect quantum burst errors with length d. Therefore, compared with 
the two kinds of previous QECCs (i.e., quantum random error-correction code and quantum burst error-correction 
code), the proposed code has an advantage of detecting two different kinds of errors at the same time, namely, the 
code can detect a fraction of errors which consists of either quantum random errors or quantum burst errors, and it 
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hence has more ability to detect quantum errors with more efficiency. 
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