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Abstract: This paper studies wavelength assignment algorithms on WDM all-optical trees of rings under different
models: static, incremental and dynamic. It is shown that 5L/2 is the tight bound of the number of required
wavelengths for static trees of rings with load L. This paper also proposes an O[log,(t+1)]-approximation and a

ih:lmaxreR ﬂ og|V(r) ﬂ +h-approximation algorithm for incremental and dynamic trees of rings respectively, where

t, h and R, are the number of rings, the number of the layers of the underlying tree and the set of rings of layer i in
the network respectively.
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1 Introduction

Optical network is emerging as a key technology in communication networks. In al-optical networks, the
information reaches its final destination directly without being converted to electronic form in between once
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transmitted as light. WDM (wavelength division multiplexing) is a basic technology in all-optical networks. It
partitions the available bandwidth on an optical fiber into some channels, each at a different wavelength. Each
channel can carry a separate stream of data and any two streams of data must be assigned different wavelengths on a
single optical fiber. Due to the natural congestion bound, it needs at least as many wavelengths as the load of an
optical network, i.e. the maximum number of paths sharing a single link, to insure no blocking. In the following, we
will always denote the maximum load and the number of the nodes of a considered network as L and N respectively.
Utilizing the bandwidth efficiently is a critical aspect to improve the performance of a network.

There are three common models in the analysis of WDM all-optical networks: static, incremental and dynamic.
Under the static model, al lightpath requests are given in advance, while under the incremental model, requests
arrive as time goes by but are never terminated, and under the dynamic model, requests to set up lightpaths arrive
over time and must be accommodated without rerouting the existing lightpaths, and lightpaths may be terminated
over time as well.

1.1 Related Work

The wavelength allocation problem is known to be NP-hard for general WDM networks, even for some simple
network topologies such as ring and tree. Ring is a very popular topology and many remarkable results about
wavelength allocation have been achieved on it. Under the static model, Gerstel et al. gave a lower bound 2L-1 in
Ref.[2] and a tighter lower bound (2—-2/(N+1))L can be found in Ref.[3]. Under the dynamic model, Gerstel et al.[*
presented an algorithm that uses at most L[ log,N [+L wavelengths and gave a general lower bound 0.5L] log,N .
Under the incremental model, Slusarek!® proposed an optimal algorithm, which uses 3L—2 wavelengths. When
wavelength conversion is allowed, Xu et al.!® proved that the optimal utilization of the bandwidth can be achieved
by placing a kind of converter of degree 4 at one node of a ring under the static model and that degree 4 is the lower
bound to reach such performance if only one converter is allowed. Wan and Chen et al.[”? gave an optimal fixed
conversion pattern for a static ring. Under the dynamic model, L log,N [+4L wavelengths are required if each of the
nodes on the ring is equipped with a converter of degree 2!*. Under the incremental model, the number of
wavelengths needed is shown to be max{O,L—d}+L for a conversion degree of d at each node!”. Further
achievements for the wavelength assignments in ring and star topologies can be seen in Refs.[13-15].

Tree is another common topology of networks. Under the static model, Kaklamanis® and Erlebach!® gave the
best upper bound as 5L/3. Kumar and Schwabe!’? gave a lower bound 5L/4. Under the incremental model, Bartal
and Leonardi'™ presented an O(log,N)-approximation algorithm and proved that no deterministic algorithm for
trees can have an approximation ratio better than <X(log,N/log,log,N). Under the dynamic model, an algorithm that
requires no more than (2L—1)[ log,N | wavelengths is proposed in Ref.[4].

For trees of rings, Deng et al.l*? showed that 5L/2 is the upper bound under the static model. Combining
wavelength allocation with routing, Bartal et al. proved that there exists an on-line algorithm for trees of rings
which is O(log,N)-approximation!*. Star-ring is a kind of topology in which some sub-rings are connected by a
backbone ring. It is a special form of trees of rings.

1.2 Summary of Results

This paper studies wavelength allocations on trees of rings in the worst cases under al the three common
models. No wavelength conversion is available, and for convenience, we assume that each ring in the network is
associated with the counterclockwise direction. Under the static model, we present a sequence of requests with
maximum load L, which requires at least 5L/2 wavelengths for any algorithm. This shows that the
5/2-approximation given by Deng et al.*? is optimal. Under the incremental and the dynamic model, we classify
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the rings in a tree of rings into some layers and present two approximation algorithms based on the classification,
one for each model. The one for the incremental model is with an approximation ratio O[log,(t+1)], where t is the
number of rings in the network. This improves the O(log, N)-approximation algorithm presented by Batal and

Leonardi™!. The one for the dynamic model is with an approximation ratio ih:lmaxreR [log |V (r)[]+h, whereR; is

the set of rings of layer i, V(r) is the set of nodes on ring r, and h is the number of layers of the underlying tree of

the network.

2 Preliminary

An optical network can be represented as a graph G=(V(G),E(G)). Under many models of optical routing, a set
P of dipathsin G is given and different dipaths sharing alink must be assigned different wavelengths on the link. In
the following, we denote Wg(L) as the number of the required wavelengths to be assigned to lightpaths in a network

with topology G without blocking.
Definition 1. A tree of rings corresponds to a tree, which is

called its underlying tree. Each node on the underlying tree

corresponds to a ring on the tree of rings, while each edge

corresponds to the common node shared by two corresponding rings.

See Fig.1.

In atree of rings, the number of rings equals to the number of

] ] nodes of its underlying tree, and the common nodes shared by two

Fig.1  Anexample of trees of rings rings are called joint nodes. A lightpath in a tree of rings may be
divided into several segments on different rings by the joint nodes it traverses. For example, lightpath p, is divided
into three segments in Ring;, Ring, and Rings respectively in Fig.2. There are two cases that two lightpaths
traversing the same ring R may overlap each other in another ring: (1) their corresponding segments in R are
adjacent, i.e., the source node of one lightpath is the same
as the destination node of the other, p; and p, in Ring, in
Fig.2 for example; (2) their corresponding segments in R
overlap each other, p, and p; in Ring, in Fig.2 for example.
The segment of a lightpath in a specific ring may be
regarded as an independent lightpath within the ring by
algorithms in the following. The technique of dividing
lightpaths into segments will be employed in the analyses
of wavelength allocations under the dynamic and
incremental models. The character in case (1) stated above Fig.2 Divisions of lightpaths by joint nodes

iscrucial in the analyses of the following algorithms.

Segments of p, in Rings:, Ring, ar}d Rings
/ ! !

I

3 TheTight Bound for Treesof Ringsunder the Static M odel
For trees of rings under the static model, Deng et al.*@ proposed a 5/2-approximation algorithm. In this
section, we will show that 5L/2 is also the tight bound in the worst case by presenting a set of requests which need

at least 5L/2 wavelengths for any algorithm.
Theorem 1. For a general tree of rings, Whreerings(L)=5L/2 is the tight bound in the worst case under the static

model.
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Proof. It follows that Weerings(L)<5L/2 from Ref.[12]. In the following, we will give a set of requests that
need at least 5L/2 wavelengths for any algorithm. Therefore, Wyee rings(L)>5L/2 in the worst case. And Theorem 1
concludes.

Given a tree of rings, five sub-rings labeled R;, R;, Ry, Rz and R, are connected by a backbone ring R
counterclockwise. See Fig.3(a). Let P;(0<i<4) be a set of L/2 identical lightpaths, whose source node isin R, and
whose destination node is in R+ 2 moa 5. All lightpaths in P; overlap all lightpaths in Pis 2 moa 5. See Fig.3(b). Then it
can be seen that all lightpaths in P; overlap all lightpaths in P;, j=i. So al the lightpaths in U*-oP; overlap each other
and thus cannot be assigned the same wavelength with each other. Therefore at least 5L/2 wavelengths are required
for this set of requests for any wavelength allocation algorithm, while the load of the tree of ringsis L. Theorem 1

holds. a
O (=) .
P2 Po
(a) A tree of rings (b) Lightpaths in Py overlaps lightpaths in P,
Fig.3

4 Dynamic Wavelength Allocation on Trees of Rings

In this section, we study dynamic wavelength allocation on trees of rings, where the existing lightpaths cannot
be rerouted and no blocking of lightpath is allowed as long as the maximum |oad does not exceed L. In this section,
we will first give a special property (Lemma 1) of the efficient dynamic wavelength allocation algorithm DWLAM
for ring networks given by Gerstel et al. and then propose a dynamic wavelength allocation algorithm for trees of
rings based on DWLA and Lemma 1. In DWLA, the available wavelengths are sorted into several disjoint pools.
The following Lemma 1 points out afeature of DWLA, which is crucial to our algorithm for trees of rings.

Lemma 1. Due to DWLA, two adjacent lightpaths in a ring network will never be assigned the same
wavelength.

Proof. Given two adjacent lightpaths P, and P, in the ring:

Case 1: At least one of them crosses link 0. Let P, crosses link 0. If P, crosses link 0 too, P, and P, would be
assigned two different wavelengths in Pool([ logoN 1) by DWLA. Otherwise, a wavelength in Pool ([ log, N 1) would
be assigned to P;, while awavelength in another pool to Ps.

Case 2: None of them crosses link O (See Fig.4). Let, by contradiction, P, and P, be assigned the same
wavelength in some Pool (m)(0<m<[log, N) by DWLA. In this case, P, crosses link a2™, while P, crosses another

Link O a2" b2™

Fig.4 The on-hub segments of two lightpaths
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link b2™ for some two different odds a and b. Assume that a<b and b—-a=2c (c>0). We have b2™-a2m=c2™*, So there
exists some link k2™?, where a2™<k2™*'<b2™. Since P, and P, are adjacent to each other, either P, or P, crosses link
k2™ Due to DWLA, at least one of them should have been assigned a wavelength in a higher pool than Pool (m). It
isacontradiction. Lemma 1 holds. O

Recall that two lightpaths traversing the same ring R may overlap in another ring only if their segmentsin R
are adjacent to or overlapping each other. Lemma 1 implies that if we use DWLA to assign wavelengths to the
lightpaths traversing ring R just based on their segmentsin R, there will be no confliction among all these lightpaths
whether on R or on other rings. Before introducing our algorithm, let us explain our strategy of classifying the rings
in agiven tree of rings.

Definition 2. Given a non-trivial tree with t nodes, we' re always able to pick out a node, the removal of which
divides the tree into at least two sub-trees, each of which has no more than t/2 nodes. Such a node is called a cut
node of the tree.

From Definition 2, we can classify all the nodes of a tree into some layers as follows: given a non-trivial tree,
pick out a cut node of the tree as the node of layer 1, remove it and leave several sub-trees to the next step. Then
pick out a cut node in each sub-tree as the nodes of layer 2, and so on, until all the sub-trees become empty. The
rings in a tree of rings can also be sorted into some layers in the same way based on its underlying tree. In the
following we denote the number of the layers as h. It is obvious that h<[ log, (N+1) .

The above idea is inspired by the argument of wavelength allocation for dynamic tree networks in Ref.[4]. Our
dynamic wavelength alocation agorithm is implied in the following Theorem 2. It employs the following
Conclusion 1.

Conclusion 1. A path traversing through two nodes of layer k (k>1) in a tree contains a node of layer lower
than k. A path traversing through two rings of layer k (k>1) in a tree of rings traverses through a ring of layer lower
than k.

Theorem 2. Let TR be a tree of rings. Then \/\lr,:e(L)S(ZihzlmaxreR ﬂog|V(r) ﬂ+ h)L , where R, is the set of
rings of layer i, |V(r)| is the number of nodes on ring r and h is the number of the layers of TR.
Proof. Let there be (Z?Zlmaxr€R ﬂog [V(r) |—\+ h)L wavelengths available in TR. We classify all theringsin

TR into h layers as the above, and divide the available wavelengths into h disjoint pools, where Pool(i) has

(max ﬂog [V (r) |—|+1)L wavelengths and is for the wavelength allocation of lightpaths on rings of layer i.

reR

Given an incoming lightpath p, let r; be the ring of the lowest layer, say layer |, which p traverses. Note that
such an ry is unique for every lightpath in the network due to our layer-classifying strategy. Let the nodes in r; be
labeled from j; to jy,,. We consider the segment of pinry, say p;, as a separate lightpath, and use DWLA to select an
available wavelength in r; out of Pool(l;) for p; and further more for p. Gerstel et al.!” concluded that

WPMA(N, L) < L[log, N']+L, where N is the number of nodes in the ring. So there is an available wavelength for

ring

p, from the view of ring r; because there are (max, ﬂog [V (r) |—|+1)L wavelengths for layer i(1<i<h).

For another lightpath g, we will show that q is assigned a different wavelength from p if q overlaps p. Denote
the ring of the lowest layer which q traverses as r, and of layer |,. We denote the segment of qinr, as qy. If 115,
then Pool(I;)=Pool(l,). So q is assigned a wavelength different from p in another pool. If 1,=I, and ry=r,, it can be
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concluded that p or (and) q traverses a ring of lower layer than I,=I, from Conclusion 1 since p and q overlap each
other. It contradicts to the assumption that |,=I, is the lowest layer that p and q traverse. If 1,=I, and ry=r,, p; and q;
are adjacent to or overlapping each other in ri;=r, since p and q overlap in some ring(s). So q is assigned a
wavelength different from p from Lemma 1 and DWLA. Theorem 2 holds. O

5 Wavelength Allocation under the I ncremental Model

The incremental model is suitable for networks with growing demands and with almost no requirements for
removing lightpaths that are already in use. In this section, we present an O[log,(t+1)]-approximation algorithm for
incremental trees of rings based on a modification of the algorithm COLOR for rings proposed by Sluarek!®, where
t is the number of rings in the network. COLOR uses at most 3L—2 wavelengths for incremental ring networks. It
divides 3L-2 wavelengths into L pools: Pool(0),Pool(1),...,Pool(L-1), where Pool(0) contains one wavelength and
each of the others contains three. An incoming lightpath is sorted into some shelf by the load it experiences and will
be assigned a wavelength in the corresponding pool to it. The set of lightpaths with a wavelength in Pool(i) is
denoted as Shelf(i), i =0,1,...,L-1. For a lightpath p, denote L(p/S)=max ., L(€/S), where L(e/S) is the number of
lightpathsin set S (not including p if P¢S) that traverselink e.

In order to deal with wavelength allocation on trees of rings, a stronger constraint that no pair of adjacent
lightpaths can be assigned the same wavelength is added to the incremental model of ring networks. The
pseudo-code of the modified COLOR, COLOR_AC, is shown in Fig.5. It isjust the same as COLOR except that it
has an additional constraint and there are three wavelengths in Pool (0).

COLOR_AC
Input: A sequence of requests to add lightpaths po,p;..., one at a time, where the load of thering is at most L.
Data Structure:
1. Acollection {shelf (i)} iL:’Ol , where Shelf(i) is a set of lightpaths.
2. A collection of pools {Pool (i)} |-y, where each pool contains 3 different consecutive wavelengths. The lightpaths in Shelf(i) will be
accommodated by Pool(i).
Additional Constraint: No pair of adjacent lightpaths can be assigned the same wavelengths even if they’ re in the same shelf.

Initialization: For each i>0, set Shelf(i)=@.

Processing a Request: Upon arrival of a new lightpath request p:
1. Seti=0;

2. While L(p/Shelf(O)u ... uShelf(i))>i do  seti=i+1;

3. Set Shelf(i)=Shelf(i){p};

4. Accommodate p using wavelengths in Pool (i) without violating the additional constraint.

Fig.5 Description of COLOR_AC

We will first show that COLOR_AC requires no more than 3L wavelengths for incremental ring networks
without blocking lightpaths, and then give the incremental algorithm for trees of rings based on it. We list the
lightpath requests as p1,p»,..., Pk, according to the order of their arrival up to some given time T. Denote F={p;,...,
pi_1} as the set of lightpaths which arrive before p; and TizuiJ-:OSheIf(j) as the set of lightpaths in shelves O to i at
time T. Then F,NT, denotes the set of lightpaths in Shelves 0 to y at the time when p, arrives.

The following three lemmas conclude for COLOR. Lemma 2 states that when a lightpath is put into Shelf(i),
the maximum load it experiencesin shelves 0, ..., i—1 does not occur in segments where it overlaps other lightpaths
in Shelf(i) for i>0. Lemma 3 states that the path of a pair of lightpaths in Shelf(i) cannot fully contain each other for
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i>0.

Lemma 2.% If p,~p,#3 and p,, pye Shelf(i) for some x<y and i>0, then L(p,py/FyT; 1)<i—1.

Lemma 3. If p,, p,e Shelf(i) for some x<y and >0, then neither p,cp, nor pycpy.

Lemma 4. The lightpaths belonging to Pool(0) do not overlap. The maximum number of lightpaths that
belong to Shelf(i) and overlap on agiven link is 2 for i>0.

Under the model with additional constraint, we call two lightpaths conflict with each other if they are adjacent
or overlap. The following Lemma 5 shows that if a lightpath p in Shelf(i) is adjacent to another lightpath g in
Shelf(i) at one of its end node v, then p doesn’t conflict with any lightpath in Shelf(i) except q at v.

Lemma 5. Given p,, pyeShelf(i) for i>0. If p, is adjacent to p, and their common node is v, then vep, for any
p.€ Shelf(i), where p#py or py.

Proof. If vep, by contradiction. Since py is adjacent to p, at node v, p, overlaps p, or(and) p,. Without loss of
generality, we assume that p, overlaps p,. If p, is also adjacent to p, at node v, then pcp, or p,cp,. It's a
contradiction to Lemma 3. Otherwise, p, overlaps px as well. Let the lightpaths be denoted by their end-nodes as
Pp=(U,... V), P=(V,... W), p~=(W,...,w5). Label all the nodes of thering as 1,2, ..., N sequentially, starting from node
u through node v to node w. We have p,=(s;,...,a), py=(a,...,e1), p~(Sx...,&2), Where a, s, s,, € and e, are the labels
of node v, u, w;, w and w, respectively. From Lemma 3, none of py, p, and p; is contained in the other. So s,<s,<a
and a<ey<e;. It follows that L(pyP/FmaxxaMTi-1)<i—1 and L(pyP/Fmaxy.2NTi-)<i-1 from Lemma 2. Since
p~(Px P (PypP,) and the load only grows as more lightpaths are added, L(p/F,NT_;)<i-1 and p, would have
been placed in alower shelf than Shelf(i) by COLOR-AC. It's a contradiction. Lemma5 concludes. O

From Lemmas 3, 4 and 5, alightpath in Shelf(i) (i>0) may conflict with at most two other lightpaths in Shelf(i),
one at each side. Therefore, given an incoming lightpath in Shelf(i) for i>0, the algorithm is always able to find a
wavelength for it, which is different from its conflicting lightpaths in Shelf(i), out of the three wavelengths in
Pool(i). It can also be seen that three wavelengths are necessary and sufficient for Pool(0) under the additional
constraint in COLOR-AC, while it needs only one wavelength in COLOR. From the above, the following Theorem
3 concludes.

Theorem 3. When no pair of adjacent lightpaths with the same wavelength is allowed, COLOR-AC uses at
most 3L wavelengths for an incremental ring.

Using algorithm COLOR_AC as well as COLOR to deal with the wavelength allocation problem on trees of
rings, we have the following Theorem 4.

Theorem 4. Under the incremental model, Wi eerings(L)<3hL—2, where h is the number of the layers of the
underlying tree of the network.

Proof. The argument is similar to Theorem 2. All the rings in the network are classified into h layers. And
3hL-2 wavelengths are divided into h disjoint pools. Pool(1),Pool(2),...,Pool(h), where Pool(h) contains 3L-2
wavelengths and each of the others contains 3L wavelengths.

For an incoming lightpath p, let r be the ring of the lowest layer it traverses and be of layer k (1<k<h). p will be
assigned a wavelength in Pool (k) according to its segment in r. Such a segment will be considered as a lightpath
within r by the algorithm. If k<h, we view the wavelength allocation for p as a stronger problem that no pair of
adjacent lightpaths in r can be assigned the same wavelength in order to avoid confliction. COLOR_AC can solve
this problem using no more than 3L wavelengths within a ring from Theorem 3. Moreover, similar to the proof of
Theorem 2, it can be seen that p doesn't overlap other lightpaths with wavelengths in Pool(k) but don't traverse r
due to our classification strategy. So it can be assigned a wavelength independent from these lightpaths. Note that
COLOR can be used especially for the lightpaths within a ring of layer h and only 3L-2 wavelengths are required.
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Hence, 3hL—-2 wavelengths can accommodate all the lightpaths in a tree of rings whose expected maximum load
isL. O

Recall that h<[ log, (t+1)]. The algorithm in Theorem 4 is O[log,(t+1)]-approximation, where t is the number of
nodes in the underlying tree of the network. This algorithm improves the O(log,N)- approximation one proposed by
Batal and Leonardi™, where N is the total number of nodes in the network.

6 Conclusion

This paper analyzes the wavelength allocation problem on WDM all-optical trees of rings under three different
models. We show that the bound 5L/2 is tight under the static model. We also propose an approximation algorithm
for dynamic model. What's more, we improve the approximation ratio from O(log,N) to O[log,(t+1)] under the
incremental model, where N and t are the number of nodes in the network and the number of rings in the network
respectively.
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