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Abstract: The formal reasoning of the fuzzy propositional modal logic based on plausibility degree is considered,
and the description of the associated Kripke semantics is given. The fuzzy constraint is introduced and used as a
basic expression, the set of reasoning rules based on fuzzy constraint is given and a formal reasoning system is
established, and in which the notation of the satisfiability is introduced. The relationship between the fuzzy
reasoning and the satisfiability of the associated fuzzy constraints set is studied, and the soundness and

completeness of the fuzzy reasoning based on satisfiability are proved.
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1 Introduction

Modal logic!!! is an important logic branch developed firstly in the category of nonclassical logics, and has
been widely used as a formalism for knowledge representation in artificial intelligence and an analysis tool in
computer science. Along with the study of modal logics, it has been found that modal logic has a close relationship
with many other knowledge representation theories. The most well-known result is the connection of the possible
world semantics for the modal epistemic logic S5 with the approximation space in rough set theory!”, where the
system S; has been shown to be useful in the analysis of knowledge in various areas. Modal logics, however, as an
extension of the classical first order logic, are limited to deal with crisp assertions. More often than not, the
assertions encountered in the real world are not precise and thus cannot be treated simply by using yes or not. Fuzzy
logic directly deals with the notion of vagueness and imprecision. Therefore, it offers an appealing foundation for
the generalization of modal logics in order to deal with some vague assertions. Combining fuzzy logic with modal
logics, fuzzy modal logics come into our view. Hajek?®! provides a complete axiomatization of fuzzy S system
where the accessibility relation is the universal relation, and Godo and Rodriguez give a complete axiomatic system
for the extension of Héjec’s logic with another modality corresponding to a fuzzy similarity relation.

In this paper we introduce the notation of fuzzy assertion based on plausibility degree and give out a
description of the fuzzy propositional modal logic (FPML). In order to find an efficient procedure that can be used
to decide whether a fuzzy assertion is a logical consequence of some existing assertions, we establish a formal fuzzy
reasoning system. Our main ideal is formed by combining the constraint propagation method introduced in Ref.[4]
with the semantics chart method presented in Ref.[5], the former is usually proposed in the context of description
logics, and the latter is used to solve the decidability problem of modal propositional calculus. The paper is
organized as follows. In Section 2, we make a quick view to propositional modal logic and give out some
terminologies and notations that will be used in the paper. In Section 3, we introduce the notation of fuzzy assertion
based on propositional modal logic, and discuss the basic properties of the fuzzy propositional modal logic based on
fuzzy Kripke semantics. In Section 4, we establish a formal fuzzy reasoning system based on fuzzy Kripke
semantics, study the satisfiability of the fuzzy constraints and prove the soundness and completeness of the fuzzy

reasoning based on the satisfiability. In the last, we make a conclusion of the paper and propose the further works.
2 Propositional Modal Logic

In general, propositional modal logic (PML) will have its alphabet of symbols:
e a set of proposition symbols, denoted by PV={py,p,,...},

o the logical symbols, ~ (negation), A(and), v(or), —(material implication),

o the modal operator symbols, O(necessity operator), ¢ (possibility operator).
The set of wffs of PML is the smallest set satisfying the following conditions:
e pis a wff, for each pePV,

o if pis a wif, then ~¢, o@, O¢ are wits,
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o if p and y are wffs, then pAy, v, p— ware wits.

As usual, we shall use ~,— and 0O as the basic connection words and take @Ay as an abbreviation for
~(p—=>~w), and v y for (~p—>y), O for ~0~p, and p<> v for (p—>W)A(y—> @), T for any tautology pv~p, and L for
any contradiction pAa~p. There are various types of propositional modal logic systems such as K-system, D-system,
T-system, S4-system, S5-system and so on. In order to lay a stress on the key points, we shall limit our discussing
on the propositional modal logic system S5 which contains the following axioms and inference rules:

e Axioms:

Aol (9->(y—>9)

Ap2 (P> (y—=>1)=> (9> ¥)—>(9—9)

A3 (~ >~ ) > (y—>p))

K (©(g->p)->0e->0p)

T (og—>9)

E Qo)

e Inference rules:

N  (necessity rule) if |- ¢ then |— ae

MP  (modus ponens) if |— ¢o—> W and |— ¢ then |— v

A Kripke model for PML is a triple M=(W,R,V), where W is a set of possible worlds, R is a binary relation on
W, called an accessibility relation, and V:WxPV—{0,1} is a truth assignment evaluating the truth value of each
propositional symbol in each possible world. The function V can be extended to all wffs recursively in the following
way:

(2.1) V(W,~g)=1-V(W,p),

(2.2) V(w, o1 p)=min {V(W,p),V(W, 1)},

(2.3) V(W, pv p)=max {V(W, 0),V(W, )},

(2.4) V(W, 9> y)=max { 1-V(W, ), V(W, )},

(2.5) V(w,o@)=inf{V(u,p):{uw)eR},

(2.6) V(W,0¢p)=sup{V(u,p):{u,w)eR}.

If M=W,R,V) is model such that R is an equivalent relation on W then M can be viewed as a semantics of
S5-system. Let M=(W,R,V) be a model of PML, ¢ be any wif of PML and weW be any possible world. We say that
@ is true in the possible world w, denoted by M |5, ¢, if V(W,@)=1; we say that ¢ is false in w, denoted by M |7;N§0, if
V(w,)=0. If there exists a possible world weW such that M |5,¢ then we say that ¢ is satisfied by w or ¢ is
satisfiable on M. A wff ¢ is said to be valid on M, or M-valid, denoted by M |5, ¢, if for all we W such that M ,¢.

3 Fuzzy Propositional Modal Logic FPML

Propositional modal logic is based on proposition. It discusses the form of proposition and the relationship
between propositions. Any wif ¢ in PML can be viewed as a proposition. By using of the axioms and the inference
rules, new formal propositions can be implied. A proposition ¢ is either true or false in a possible world. However,
in a vague system, we can not simply say that a proposition ¢, as in PML, is true or false. To cope with this, we
introduce the following notations in which plausibility degree of a proposition is considered:

Definition 3.1. A fuzzy assertion in fuzzy PML is a pair (@,n), where pe PML is a proposition and ne[0,1]
expresses the plausibility degree of ¢. A fuzzy assertion (¢,n) is called atomic assertion if ¢ is a proposition
symbol.

To built the semantics of PML, we shall follow Kripke’s semantics for PML Let M=(W R,V) be a triple, where

W is a set of possible worlds, R is a binary relation on W, called an accessibility relation, and now V turns to be a

© e

http:/ www. jos. org. cn




1362 Journal of Software 2005,16(8)

function called plausibility degree function, V:WxPV—[0,1], such that for each pePV, V(w,p)=n for some ne[0,1],
where V(w,p)=n can be abbreviated by W(p)=n, means that the possible world w considers that the plausibility
degree of proposition p is n. As we do in Section 2, see (2.1)-(2.6), the function V can be extended to any
proposition of PML recursively.

Definition 3.2. Let weW be a possible world and {@,n) be a fuzzy assertion in FPML. We say that w satisfies
(@,n), denoted by Sat(w,{¢,n)), if W(¢)=>n.

Proposition 3.3. Let M=(W.,R,V) be a Kripke semantic for FPML, we W be a possible world, ¢,y are wffs of
PML and ne[0,1] be a number. Then

(a) Sat(w,{~,,ny) iff w(p)<1-n;

(b) Sat(w,{pAw,n)) iff Sat(w,(@,n)) and Sat(w,{ y,n));

(c) Sat(w,(gv y,m)) iff Sat(w,(¢p,n)) or Sat(w,(y,n));

(d) Sat(w,(p—> ) iff Sat(w,(~p,n) or Sat(w.(y4n));

(e) Sat(w,({oe,n)) iff Sat(u,(e,ny) for all ue W such that (uw)eR;

() Sat(w,(Op,ny) iff Sat(u,{p,n)) for some ueW such that (uw)eR.

Definition 3.4. Let M=(W,R,V) be a model defined as above, and A be a set of fuzzy assertions. If there exists
a weW such that Sat(w,7) for all yeA then A is said to be satisfiable in M, and is denoted by Mk,A. If for all
possible worlds weW, M kA then A is said to be valid in M, and is denoted by M RA.

Proposition 3.5. For any semantics model M of FPML, following properties hold:

(a) M k(A;1,0.5), (b) M R (A2,0.5), () M k(A3,0.5), (d) M (K,0.5), (¢) M R(T,0.5), (f) M |=(E,0.5).

Proposition 3.6. If M k(p,n) then M k{(oe,n).

Proposition 3.7. If M k (gp—y,n) and M & (p,m), where n,me[0,1] such that n>1-mthen M & (w,n).

Proposition 3.7 gives out a sort of modus ponens over assertions, from which we can see that the plausibility
degree of w depends on the plausibility degrees of ¢p— 7 and ¢. When the plausibility degree of ¢ is very small, the
plausibility degree of y can hardly be confirmed.

4 Formal Fuzzy Reasoning Based on PML

Let 2 be a set of wifs of PML. A wif ¢ is said to be a logical consequence of 2, denoted by =g, if every
model of 2'is also a model of ¢. In FPML, we have following definitions.

Definition 4.1. A set of fuzzy assertions is called a fuzzy knowledge base. Let £ be a fuzzy knowledge base
and (@,n) be any fuzzy assertion. If any model of X is also a model of (¢p,ny then we say that assertion (@,n) is a
logical consequence of £, which is denoted by % |x(¢,n).

For example, by Propositions 3.6 and 3.7, we immediately have that {(@,n)} & (Oe,n) and {{p— w,N) (@M}
(y,n) for n>1-m.

The process of deciding whether 2 vy is called a fuzzy reasoning procedure based on PML. We shall develop a
reasoning mechanism about fuzzy assertions in this section.

Definition 4.2. The alphabet of our fuzzy reasoning system contains a set of the symbols used in PML, a set of
possible worlds symbols W,,W,,..., a set of relation symbols {<,<,>>} and a special symbol R. The fuzzy constraint
in the fuzzy reasoning system is the expression in the form of (w:¢ rel ny or ((w,w’'): R>1), where pePML, ne[0,1]
and rel e {<,<,>,>}.

Definition 4.3. An interpretation | of the system contains a interpretation domain W such that for any w, its
interpretation w!eW is a mapping from PV into [0,1], and the interpretation R! is a relation on W.

Definition 4.4. We say that a fuzzy constraint (W:¢ rel n) (resp.((w,w'y:R>1)) is satisfiable in an interpretation
I if w!(p) rel n (resp.(w',w'yeR"); a set Sof fuzzy constraint is satisfiable in | if every element of Sis satisfiable in
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l. A fuzzy constraint y (or a set of constraints S) is said to be satisfiable if there exists an interpretation | such that y
(or ) is satisfiable in .

The system contains the following reasoning rules:

e The reasoning rules about R:

(R) @ = ((w,w): R 21);

(Re) ({w,w"y: R >1) = ((w',w): R >1);

(R) (w,w'): R 21),(w',w'): R =1) = ((w,w'): R >1).

¢ The basic reasoning rules:

(~2) (W:~@p=n) = (W:@p<1-n);

(~2) (W~ Ny = (W:p=1-n);

(—2) (W:p>p2n)y = (W:p<1-n) \ (W:yzny;

(—=) (Wip— p=<n) = (W:@=1-n) (W: p<n);

(0=) (w:oeg=ny, (W', W):R >1) = (W':g>n);

(L) (w:o@=ny, (W', wW):R >1) = (W': ).

The rules for the case < and > are quite similar. From basic reasoning rules one can easily define reasoning
rules (Arg), (Vre)> (Oret), where rel e {<,>,<.>}, as an extension of the basic reasoning rules.

Definition 4.5. Two fuzzy constraints & ¢ are said to be a conjugated pair if one of the following conditions
holds:

(4.1) &(w:g=n), (=(W:@<m) and n>m;

(4.2) &&(wigzn), (=(W:@p<m) and n>m;

(4.3) &&(wig>n), {=(w:p<m) and n>m;

(4.4) &Ewig>ny, ¢=(W:@p<m) and n>m.

Definition 4.6. A set of fuzzy constraints Scontains a clash if it contains a conjugated pair.

Proposition 4.7. If Sis a set of fuzzy constraints and contains a clash then S can not be satisfied in any
interpretation I.

Lemma 4.8. If fuzzy constraint (w:¢rel n) is satisfiable in some interpretation Proposition 4.7. If Sis a set of
fuzzy constraints and contains a clash then S can not be satisfied in any interpretation l. then there exists a model
M=(W,R,V) such that w!eW and for each we W, w(p)rel n.

Proof. We prove the lemma by induction on the length of the formula ¢.

The basic step is quite simple. If ¢ is a proposition symbol, we define W={w!}, R={(w!'w!)} and V (w!,p)=w!
(p) for every pePV, then the model M=(W R,V) is what we need.

Assume that ¢ is ~y. Since (W:¢ rel n) is satisfiable in I, (w:y rel” 1-n) is satisfiable in I, where rel” is the
converse of rel. By induction assumption, we have a model M such that w!eW and for every weW, w(y) rel” 1-n.
Notice that w(y) rel” 1-n iff w(~y) rel n, thus M is also the model we need.

Suppose @ is w;—> ;. There are two cases according to rele {>,>} and rele {<,<}. If rele {>,>} then either
(w:yrel” 1-n) or (W:ysrel n) is satisfiable in |. By induction hypothesis, the model obtained according to either
(W:prel” 1-n) or (w:psrel ny is what we need. If rel e {<,<} then both (w:y;rel” 1-n) and (w: ysrel ny are satisfiable
in |. Thus, by induction hypothesis, we have two models, M, M, say, obtained by the facts that both (w: y;rel” 1-n)
and (W:y»rel n) are satisfiable in | respectively. Since w! is in both M, and M,, W,nW,=2@&. Let W=W,~W, and
R=R!TW. Then the model M=(W,R) satisfies the lemma’s condition.

Assume that ¢ is ow and that (W:owrel n) is satisfiable in |. If rel e {>,>} then (w:yrel n) is also satisfiable in
I, thus the model we need exists. If rel e {<,<} then there exists a symbol w; such that (w,! w!)eR! and (w,: yprel n)
is satisfiable in |. By induction hypothesis, there exists a model M, such that w,e W, and w(y)rel n for any weW,.
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Let W=W,u{w!'}, R=RI[W. It is easy to verify that M is the model we need. O

Corollary 4.9. Let S={{w:grel; n):1<i<m} be a set of fuzzy constraints. If Sis satisfiable then there exists a
model M such that the interpretation of w is in W and W(¢) rel; n; for each weW and each (w:grel; n)eS.

We may reduce the fuzzy reasoning problem to the satisfiability of a set of fuzzy constraints. The following
theorems show that our reasoning mechanism based on satisfiability is sound and complete. To decide whether 5 |
(), let Se={(Ww:y =2 n,)(y,n,ye z }, it then follows that

Theorem 4.10. 5 g (@,n) iff S5 U{(W:p<n)} is not satisfiable.

Proof. If Ssu{(w:p<n)} is satisfiable in some |, then by Corollary 4.9 there exists a model M such that
w!eM. M is obviously a model of X', but not a model of {¢,n), this is because that for all we M, w( w)zn, for any
(yn,ye £ and wh(p)<n, thus 5k (pn). Conversely, if 2 | (@,n), then there exists a model M=(W,R,V), and a
possible world weW such that w(y)>m for any (w,mye 2 and w(g)<n. Let | be an interpretation such that w'=w.
Then S5 U {{W:p<n)} is satisfied by interpretation I.

Following example shows how our reasoning works.

Example 1. To decide whether {(0¢,0.7),(0,0.6)} & {O(@A),0.6) or not?

Let Ss={(w:0¢>0.7),(Ww:0120.6)} and S=S5 U(W:0(pA 1)<0.6). The reasoning procedure is as follows:

(1) (w:0¢20.7) Hypothesis
(2) (w:op=20.6) Hypothesis
(3) (W:0(pAy) <0.6) Hypothesis
@) (W', W):R >1) (w":90>0.7) (1)(0>)

(5) (W':y20.6) 2)H(@2)
(6) (W': A y<0.6) 3)H(©<)

(7) (W':9<0.6)(W':y<0.6)  (6)(A<)

We have S={(1),(2),(3)} at the beginning of our reasoning, then §=SU{(4)}, then $=S5, {(5)}, then S=SU
{(6)}. There are two educed sets S and S” of S;, where S=SuU{{W":¢<0.6)} and S'=SU{(W":¥<0.6)}. This is
because the constraint (7) is obtained by using (A<) on (6). Since both S and S’ contain a clash, by Proposition 4.7
both S and S” can not be satisfied in any interpretation I, thus the set S=Sz\U(W:0(@A 1)<0.6) can not be satisfied
by any interpretation |. By Theorem 4.10, we know that (O(pA),0.6) is a logical consequence of {{0,0.7),
(0y,0.6)}.

5 Conclusion and Further Work

In this paper we have introduced a formal fuzzy reasoning system based on propositional modal logic and
established the relationship between the reasoning procedure 2 (¢,n) and the satisfiability of some set of fuzzy
constraints. Compared with the works that have been done by many logical researchers, the distinctive feature of
our work is that the formal fuzzy reasoning system established in this paper is not for the fuzzy propositional modal
logic itself, but for the reasoning based on the fuzzy propositional modal logic. Fuzzy constraints in our system
contain semantic information, thus to decide if a set of fuzzy constraints is satisfiable is more practicable than to
verify that every model of X is the model of (@ny. Our intention is to offer a method which could be used to
realize the reasoning based on the modal logic in a computer eventually. However, there are many technical works
that have to be done before we reach our goal. Our further work is to build an efficient reasoning mechanism based
on fuzzy constraints, which could be used to realize in computer to decide whether a fuzzy assertion is a logical
consequence of some existing assertions. The basic idea of our further work is to construct a it reasoning tree in
which every branch is a set of the constraints reduced from the original one during our reasoning procedure, and

convert the reasoning problem into the satisfiability problem of these constraint sets.
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