
 Vol.16, No.7 ©2005 Journal of Software 软 件 学 报 1000-9825/2005/16(07)1344

关于三个流密码的安全性
∗

张 斌 1+, 伍宏军 2, 冯登国 1, 鲍 丰 2
1(信息安全国家重点实验室(中国科学院 研究生院),北京 100049)
2(Institute for Infocomm Research, 119613, Singapore)

On the Security of Three Stream Ciphers

ZHANG Bin1+, WU Hong-Jun2, FENG Deng-Guo1, BAO Feng2

1(State Key Laboratory of Information Security (Graduate School, The Chinese Academy of Sciences), Beijing 100049, China)
2(Institute for Infocomm Research, 119613, Singapore)

+ Corresponding author: Phn: +86-10-88258713, Fax: +86-10-88258713, E-mail: mzb_123@hotmail.com, http://www.is.ac.cn

Received 2004-02-13; Accepted 2004-10-09

Zhang B, Wu HJ, Feng DG, Bao F. On the security of three stream ciphers. Journal of Software, 2005,16(7):
1344−1351. DOI: 10.1360/jos161344

Abstract: In this paper three newly proposed stream ciphers S1, S2 and S3 are analyzed. These stream ciphers are
designed with respect to different levels of GSM security. The results show that both S1 and S2 are vulnerable to the
known plaintext attacks and S3 can not decrypt correctly. With negligible amount of computation and few known
keystream bytes, S1 and S2 can be broken completely. Furthermore, simulation results show that S3 cannot work
correctly. The conclusion is that these stream ciphers are either extremely weak or poorly designed so that they
cannot play the role as the designers hope in GSM network security.
Key words: stream cipher; security; GSM network; linear feedback shift register; bytes

摘 要: 对 3 个新近提出的流密码 S1,S2 及 S3 进行了分析.这 3 个流密码被设计用于 GSM 网络加密,且分别对应

于不同的安全性等级.结果表明,S1 和 S2 都易受已知明文攻击,而 S3 不能正确解密.只需少量的密文字节和可以忽

略的计算量就能够完全破解 S1 和 S2.模拟实验结果表明,S3 不能正确工作.结论是这 3 个流密码要么及其脆弱,要么

就是不能正确解密,因此它们并不能在 GSM 网络安全方面扮演设计者所希望的角色.
关键词: 流密码;安全性; GSM 网络;线性反馈移位寄存器;字节
中图法分类号: TP309 文献标识码: A

∗ Supported by the National Natural Science Foundation of China under Grant No.60273027 (国家自然科学基金); the National

Grand Fundamental Research 973 Program of China under Grant No.G1999035802 (国家重点基础研究发展规划(973)); the National

Science Fund of China for Distinguished Young Scholars under Grant No.60025205 (国家杰出青年学者科学基金)
ZHANG Bin was born in 1976. He is a Ph.D. candidate at the State Key Laboratory of Information Security, Graduate School of

the Chinese Academy of Sciences. His current research interests include analysis and design of stream ciphers. WU Hong-Jun was born
in 1974. He is an Associate Scientist at the Institute for InfoComm Research, Singapore. His researches areas are cryptography and
information security. FENG Deng-Guo was born in 1965. He is a professor and doctoral supervisor at the State Key Laboratory of
Information Security, Graduate School of the Chinese Academy of Sciences. His research areas are information security and network
security. BAO Feng was born in 1962. He is a Leading Scientist at the Institute for InfoComm Research, Singapore. His research areas
include cryptography, distributed computing and automata theory.

 张斌 等:关于三个流密码的安全性 1345

1 Introduction

Mobile communication has become an indispensable part of ordinary life in today’s world. People can
communicate with each other anywhere and anytime through mobile phones. However, the openness of wireless
communications has caused many security problems. It is now believed that the security service is essential to the
success of a mobile communication network. The Global System for Mobile Communications (GSM)[1,2] is the
standard for digital mobile communications. It involves a set of security features such as applying stream cipher A5
in encryption/decryption.

Due to the fact that the A5 algorithm recommended in GSM standard is a proprietary algorithm and A5/1 is
subject to export control, many efforts have been made towards designing new non-proprietary encryption
algorithms. In Refs.[3,4], three stream ciphers are proposed for GSM applications. So far, we do not see any
analysis of these three stream ciphers elsewhere. They are claimed to be efficient and secure. However, we will
show in this paper that the three stream ciphers proposed are either extremely weak or poorly designed. Both S1 and
S2 are vulnerable to known plaintext attacks and S3 cannot decrypt correctly. With negligible amount of
computation and few known keystream bytes, S1 and S2 can be broken completely.

The organization of this paper is as follows: first we will give a review on the three newly proposed stream
ciphers in section 2, especially on the key generator and two operation modes of stream cipher S2. Our analysis is
presented in section 3 including the theoretical complexities to break S1, S2 and the experimental results illustrating
the decryption failure of S3. Finally, some conclusions are given in section 4.

2 Three Newly Proposed Stream Ciphers

GSM is the first mobile communication system that has comprehensive security features. The A5 algorithm is a
proprietary algorithm used in GSM for message encryption/decryption. Since A5/1 algorithm is subject to more and
more suspicions on its security[5,6], many efforts have been made to design new stream ciphers for GSM network. In
Refs.[3,4] the authors proposed three simple stream ciphers S1, S2, S3 to substitute the A5 algorithm with respect to
different levels of security. Unfortunately, as we will show below, the three stream ciphers are all poorly designed.

We will give a complete description of the three stream ciphers S1, S2 and S3 in the following. The three
stream ciphers are all based on the following key generator (KG).

2.1 Key generator (KG)

For an initial keystream of length l bytes, (M0,M1,…,Ml−1), and an input message of length n bytes,
(m0,m1,…,mn−1), the keystream (K0,K1,…,Kn−1) of length n bytes, is generated according to the following
procedures:

Step 1. Let i=0, j=0, N=170, cc=0;
Step 2. Compute Mj=(Mj+cc)mod28; If j=0 then Mj=Mj⊕N; else Mj=Mj⊕Mj−1;
Step 3. Let Ki=Mj; N=(N+mi)mod28; i=i+1; j=j+1; cc=cc+1;

If j=l then reset j to 0;
If cc=256 then reset cc to 0;
If i=n then exit; else goto Step 2,

where N is an eight-bit string used to change M0 by XOR operation at the beginning of each cycle; ⊕ denotes
bit-wise XOR. cc is a number added to Mj (j=0,…,l−1) so as to increase the randomness of Mj. Note that the initial
value of cc and N can be any number from 0 to 255. In the above design, take the number 170 (10101010)2 as the
default value of N and 0 as the default value of cc.

 1346 Journal of Software 软件学报 2005,16(7)

2.2 Stream cipher S1

The stream cipher S1, as shown in Fig.1, consists of the KG and an XOR operator. The ciphertext (ci) is
obtained by XOR between the input message (mi) and the output (Ki) of KG on a byte-by-byte basis.

Fig.1 The stream cipher S1

⊕
⊕

⊕
ci mi

Fig.2 The stream cipher S2

K′i

Ki

M

LFSR-1

 Key generator (KG)

ci

Ki

M

Key generator (KG)

 mi

The initial keystream M is random, and the control parameters M, N and cc are securely protected.

2.3 Stream cipher S2

 M ⊕
 M

 ⊕

Fig.3 Mode 1 of stream cipher S2

Key generator (KG)

1LFSR-1

2LFSR-1

8LFSR-1

To increase the randomness of the generated keystream of key generator (KG), in Ref.[3] the authors proposed
the following stream cipher S2, as shown in Fig.2. It consists of
the KG, the LFSR-1, and two XOR operators, where the
LFSR-1 is a maximum-length LFSR with tap sequence
(32,7,6,2,0).

The keystream K′i is obtained by using XOR operation
between the output of KG and the output stream of LFSR-1.
The ciphertext (ci) is the outcome of the XOR operation
between the message bytes (mi) and the keystream bytes (K′i).
The keys of stream cipher S2 are the initial state of LFSR-1 and
the secret parameters of KG.

In general, there are two operation modes of stream cipher
S2, Fig.3 shows the mode 1.

Mode 2: instead of using eight parallel LFSR-1s as in
mode 1, this mode is just the direct implementation of S2 with
the clock of LFSR-1 eight times as fast as that of KG.

2.4 Stream cipher S3

This cipher is designed as the most reliable stream cipher for GSM applications. It consists of the KG, two
LFSRs, and three XOR operators. The two LFSRs are maximum-length LFSRs with known tap sequences (33,13,0)
and (37,6,4,1,0) respectively. As Fig.4 shows, this cipher works according to the following rule:

Step 1. If (Ki⊕mi)mod2 is1 , then the LFSR-2 is clocked;
Else (Ki⊕mi)mod2=0, then the LFSR-3 is clocked;

Step 2. The keystream K′i is obtained by using XOR operation between the output of the LFSR-2 and the
output of LFSR-3;

Step 3. The ciphertext, (ci), is obtained by using the XOR operation between the input message, (mi), and the
keystream (K′i) on a byte-by-byte basis.

 张斌 等:关于三个流密码的安全性

⊕

⊕

()tφ

⊕

1347

)

 (1)

Fig.4 The stream cipher S3

K′i

Ki

mi

M

LFSR-3

LFSR-2
Key generator (KG)

ci

The keys of stream cipher S3 are the initial states of the LFSR-2, LFSR-3, and the secret parameters of the KG.
The security level of the stream ciphers S1, S2, S3 is in an ascending order with S3 having the highest level of
security. In Ref.[3], the authors conclude that if the initial keystream M being random, then all the three stream
ciphers are secure. However, as we will show below that it is not true.

3 Cryptanalysis of the Three Stream Ciphers S1, S2, S3

In this section, we will break the stream ciphers S1, S2 and show that the stream cipher S3 can not correctly
decrypt. Since known-plaintext attack is the most basic attack that a good stream cipher should resist successfully,
we will simply implement this kind of attack on these three stream ciphers.

3.1 A known-plaintext attack on S1

Note that S1 is the direct implementation of the key generator to encrypt messages and there are no
complicated nonlinear permutations used in this cipher. This is S1’s vital flaw. Assume that the key of S1 consists of
the initial keystream (M0,M1,…,Ml−1) and the secret parameters N and cc. We know a segment of the generated
keystream (Ki). Our task is to recover the key from the known segment of (Ki). Note that we process on a
byte-by-byte basis.

We have following equations according to the description of KG:

()
()

()
() (

()














⊕+++==⊕
+++⊕++==⊕

⊕−++==⊕

⊕++==⊕
⊕+==⊕

+++

−

−−−−−

llll

llll

lllll

KlccKKcm
mmNlccKKcm

KlccMKcm

KccMKcm
NccMKcm

1
...

1

1

1111

100

21111

01111

0000

M

where ⊕ denotes bit-wise XOR and + denotes mod28 addition. mi and ci denote the ith bytes of the messages and
ciphertexts, respectively. From (1) we get:

()

() (
()








⊕+++==⊕
+++⊕++==⊕

−≤≤+++=⊕⊕⊕

+++

−

+++

llll

llll

iiiii

KlccKKcm
mmNlccKKcm

liiccMcmcm

1
...

20,1

1111

100

111

) (2)

Thus we can recover cc from the last equation of (2) by an exhaustive search through {0,1}8 which is
computationally negligible. Then from the second last equation of (2) we can also restore N by an exhaustive over

 1348 Journal of Software 软件学报 2005,16(7)

{0,1}8. The computation amount is also negligible. With the knowledge of N and cc, we can simply recover the
initial keystream (M0,M1,…,Ml−1) using l exhaustive searches through {0,1}8, thus the total complexity of above
procedures is O(l) with l+2 bytes of keystream known, which means the stream cipher S1 is extremely weak.

3.2 An known-plaintext attack on S2

We first focus on the operation mode 1 of S2. Assume that the 1LFSR-1 corresponds to the least significant bit
of the output byte. We know a segment of the generated keystream and the feedback polynomial of LFSR-1. Our
aim is to recover the initial states of the eight LFSRs and the initial keystream M, secret parameters N and cc.

Our basic technique is that when adding (x+y)mod28, it has the same effect as x0⊕y0 with respect to the least
significant bits x0 and y0, where ⊕ denotes the XOR operation. Thus we have:

 (3)
() () ()

()
() () ()

()


















⊕⊕⊕⊕=⊕=⊕

⊕⊕+⊕⊕=⊕=⊕

⊕⊕⊕⊕⊕⊕⊕=⊕=⊕

⊕⊕−⊕⊕=⊕=⊕

⊕⊕⊕⊕=⊕=⊕

⊕⊕⊕=⊕=⊕

−
−−

−
−−−

++
+++

−

−
−−

−
−−−

12
1

0
2

00
1

12
1

0
12

0
12

0
12

1
1

0
02

00
1

1
1

0
1

0
1

0
1

21
0

1
0
0

000
01

000

1
1

0
22

00
1

1
1

0
1

0
1

0
1

1
1

0
0

00
1

1
1

0
1

0
1

0
1

0
1

000
0

0
1

0
0

0
0

0
0

1

1

1

1

l
ll

l
lll

ll
lll

l
l

l
lll

l
ll

l
lll

xKccKxKcm

xKlccKxKcm

lxmmNccKxKcm

xKlccMxKcm

xKccMxKcm

xNccMxKcm

M

L

M

with respect to 1LFSR-1, where xi
1 denotes the ith output bit of 1LFSR-1 and (•)2 denotes the least significant bit of

the argument’s binary representation. Note that here denote the least significant bits of

corresponding bytes. Matching the ith and the (i+l)th equation of (3) together for

00000 ,,,, ccNKcm iii

10 −≤≤ li , we have:

()
() ()

() ()











⊕⊕⊕⊕−⊕⊕=⊕⊕⊕

⊕⊕⊕⊕+⊕⊕=⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕=⊕⊕⊕

−−
−−

−
−−−−

+
++

−

12
1

2
1

0
2

0
22

01
1

0
12

0
12

0
1

0
1

1
1

0
1

0
0

0
02

01
1

0
1

0
1

0
1

0
1

0
1

0
0

0
2

0
1

0
1

000
0

0
0

12

1

...

ll
ll

l
llll

l
ll

l
l

ll

xxcmlccxcmcm

xxcmlccxcmcm

mmNlccxxcmcm

M
 (4)

There are altogether four combinations for the value of ()00 , Ncc

31
1,..., x

. We can try every combination, for it actually

has no effect on the total complexity of our attack. So we can safely deal with the situation that is known.

In this case, we can transform the variables with in (4) into linear combinations of . For
GSM applications where , we can get linearly independent equations from above equation system with
overwhelming probability. Then we solve these linearly independent equations to recover the initial state

 of

(00 , Ncc
1
1

0
1 ,...,, xx

)

))
)

ix1

3
32≥i

(1
1

0
1 , xx

()31
1x

32>>l 2

(31
1

1
1

0
1 ,...,, xxx

(0
1

0
0 ,...,, MMM

1LFSR-1. With the knowledge of , we can easily recover the least significant bits

 according to (3). 0
1−l

So far, we have restored the following initial values ()31
1

1
1

0
1 ,...,, xxx , ()00 , Ncc and . Note

that with the knowledge of the least significant bits, we can get the carry to forward bits when adding (x+y)mod2

()0
1

0
1

0
0 ,...,, −lMMM

8.
Thus we can get similar equation systems as (3) with respect to the second least significant bits. Assume we have
got the ith least significant bits and the initial state of i+1LFSR-1, then with respect to the i+1th least significant bits
and the initial state of i+2LFSR-1 with 60 ≤≤ i we have:

 张斌 等:关于三个流密码的安全性 1349

 (5)




















⊕⊕⊕⊕=⊕=⊕

⊕⊕⊕⊕=⊕=⊕

⊕⊕⊕⊕⊕=⊕=⊕

⊕⊕⊕⊕=⊕=⊕

⊕⊕⊕⊕=⊕=⊕

⊕⊕⊕⊕=⊕=⊕

−
+

+
−−

++
−

−
+

+
−

+
−

+
−

+
+

+
+

+++
+

+
+

+
+

+
+

+
+++

+
+++

−
+

+
−−

++
−

−
+

+
−

+
−

+
−

+
+++

+
+++

+
+++

+
+++

12
2

1
212

11
1

12
2

1
1

1
12

1
12

1
2

1
01

11
1

1
2

1
1

1
1

1
1

2
111

02
111

1
2

1
21

11
1

1
2

1
1

1
1

1
1

1
2

1
01

11
1

1
2

1
1

1
1

1
1

0
2

1
0

11
0

0
2

1
0

1
0

1
0

l
i

i
ll

ii
l

l
i

i
l

i
l

i
l

l
i

i
l

iil
i

i
l

i
l

i
l

l
i

i
l

iil
i

i
l

i
l

i
l

l
i

i
ll

ii
l

l
i

i
l

i
l

i
l

i
iii

i
iii

i
iii

i
iii

xKAccKxKcm

xKAccKxKcm

xBNAccKxKcm

xKAccMxKcm

xKAccMxKcm

xNAccMxKcm

M

M

where Ai and B denote the carriers such that: for 10 −≤≤ lj , Aj is the carry to the i+1th bit calculated from

 ()282modj () ()201
2

01 ,...,,,...,, ccccccMM ii
j

i
j

i
j

−− ++ M ; for 12 −≤≤ ljl , Aj is the carry to the i+1th bit calculated

from

 ()282modj + () ()201
2

01 ,...,,,...,, ccccccKKK ii
lj

i
lj

i
lj

−
−

−
−− + (6)

B is the carry to the i+1th bit calculated from

 () ()∑ −

=
−− + 1

1 2
01

2
01 ,...,,,...,, l

k k
i
k

i
k

ii mmmNNN (7)

Note that all the Ajs and B can be easily calculated from the known information. Thus we will regard them as known
parameters. Other parameters such as , and in (5) denote the i+1th least significant bits of the

corresponding jth bytes. denotes the jth output bit by the

1+i
jK

1

1+i
jm 1+i

jc
j

ix 2+

0

i+2LFSR-1. Matching the ith and the th
equations of (5) together for

()li +
−≤≤ li , we have:

 (8)
()

()











⊕⊕⊕⊕⊕⊕=⊕⊕⊕

⊕⊕⊕⊕⊕⊕=⊕⊕⊕

⊕⊕⊕⊕⊕=⊕⊕⊕

−
+

−
+

+
−

+
−−

+−
+

+
−

+
−

+
−

+
−

+
++

++
+

+
+

+
+

+
+

++

++
++

++++

12
2

2
2

1
2

1
212

11
2

1
12

1
12

1
1

1
1

1
2

0
2

1
0

1
01

11
2

1
1

1
1

1
1

1
1

11
2

0
2

111
0

1
0

l
i

l
i

i
l

i
ll

il
i

i
l

i
l

i
l

i
l

l
ii

ii
l

i
i

i
l

i
l

ii

i
l

il
ii

i
l

i
l

ii

xxcmAccxcmcm

xxcmAccxcmcm

NBAccxxcmcm

M

Because there are only four combinations of the value ()11, ++ ii Ncc

32>>l

, we can simply try every combination
w no effect on the total complexity of our attack. So we can also deal with the situation that

 is known. In this case, we can transform the variables with in (8) into linear

combinations of . For GSM applications where , we can get linearly independent
equations from above equation system with overwhelming probability. Then we solve these linearly independent
equations to recover the initial state of

hich has actually
)

)

)

(11, ++ ii Ncc j
ix 2+ 32≥j

32(31
2

1
2

0
2 ,...,, +++ iii xxx

(31
2

1
2

0
2 ,...,, +++ iii xxx i+2LFSR-1. With the knowledge of , we

can easily recover the least significant bits

()31
2

1
2

0
2 ,...,, +++ iii xxx

()1
1,..., +
−
i
lM1

1
1

0 , ++ ii MM according to (5). The following is our total attack:

Parameters: feedback polynomial with tap sequence (32,7,6,2,0);
Step 1. input the value of l;
 Derive a linear equation system of 2l linear equations from the first 2l bytes of keystream as in (3)

and solve it to get the initial values , ()31
1

1
1

0
1 ,...,, xxx ()00, Ncc and ()0

1
0
1

0
0 ,...,, −lMMM ;

Step 2. Compute Aj and B, for 120 −≤≤ lj , from the known bits;

for i=0 to 6

 Derive a linear equation system of 2l linear equations from the first 2l bytes of keystream as in (5);

 Derive a linear equation system of 32 linear equations on the initial state and ()31
2

1
2

0
2 ,...,, +++ iii xxx

 1350 Journal of Software 软件学报 2005,16(7)

guess the value of ()11, ++ ii Ncc

1
1

1,..., +
−

+ i
lM

to solve this system;

=⊕

=⊕

⊕=⊕

=⊕

⊕=⊕

⊕=⊕

−

++

−−

0
2

0
121

0
1

0
1

00

0
1

0
1

0
1

0
1

0
0

0
0

ll

ll

ll

ll

Kc

Kc

xKc

Kc

xKc

xKc

20 ≤≤ lk

 Deduce () . 1
1

0 ,+ ii MM

Since the complexity of solving a system of 32 linear equations is only constant magnitude, the total
complexity of above attack is O(1) with 2l known keystream bytes, which means the operation mode 1 of stream
cipher S2 is extremely weak too.

As for the operation mode 2 of stream cipher S2, it is simply to substitute the variables for in the
equation system (3) to determine the least significant bits of

ix1
ix ⋅8

1

()110 ,...,, −lMMM as follows:

 (9)
() () ()

()
() () ()

() ()


















⊕⊕⊕⊕=⊕

⊕⊕+⊕⊕=⊕

⊕⊕⊕⊕⊕⊕⊕=

⊕⊕−⊕⊕=⊕

⊕⊕⊕⊕=

⊕⊕⊕=

−
−−

−
−−

++
+

−

−
−−

−
−

⋅⋅

128
1

0
2

00
1

128
11

0
2

18
1

0
02

00
1

18
1

0
1

2
8
1

0
1

0
0

000
0

8
1

0

18
1

0
22

00
1

18
1

0
1

18
1

0
0

00
1

18
1

0
1

0
1

000
0

0
1

0
0

1

1

1

1

l
ll

l
l

ll
l

l
l

l
l

l
ll

l
l

xKccKxm

xKlccKxm

lxmmNccKm

xKlccMxm

xKccMm

xNccMm

M

L

M

The procedures for solving (9) are the same as those for solving (3) of mode 1, so we omit them. When determining
the i+1th least significant bits with the knowledge of jth ()ij ≤ least significant bits, we simply substitute the

variables for with j
ix 2+

kjx 8
1
+ 1− . Other procedures are the same as those in mode 1, we omit them

too. The complexity of our attack on mode 2 is also O(1) with 2l known keystream bytes, thus we can safely affirm
that the stream cipher S2 is so weak in security that it should not be used in GSM applications.

3.3 Analysis of the stream cipher S3

In this section, we will show that the proposed stream cipher S3 can not decrypt correctly. From Fig.4, we can
see that the two LFSRs work in a stop/go manner whose clocks are controlled by the XOR outcome of Ki and mi.
Since S3 works in a self-synchronization fashion, it is obvious that if the same initial states and the same initial
keystream are enclosed into the two LFSRs and the key generator respectively, then the clock behaviours of LFSR-2
and LFSR-3 on the receiver side are not the same as those on the sender side. Thus in general the output of the XOR
outcome K′i on the receiver side is not the byte encrypted to the message byte mi, which means S3 cannot decrypt
correctly. On the other side, if one wish to choose the initial states of the two LFSRs and the initial keystream of the
key generator in such a way that on the receiver side it can decrypt correctly, then he will be confronted with the
problem that without the knowledge of the message mi, he has to simulate the correct clock behaviour that can
decrypt the ciphertext ci, which is impossible for practical applications.

Experimental results. We have made simulation experiments to test the stream cipher S3 in C language on a
Pentium 4 2.5GHz processor. All the experimental results show that S3 cannot decrypt correctly. Here we only list
the results of mode 1 which apply eight parallel LFSRs for LFSR-2 and LFSR-3 respectively. The tap sequences of
the two LFSRs are (33,13,0) and (37,6,4,1,0) respectively. We use RC4 as random noise source to provide the initial
states of the LFSRs and the initial keystream of KG. The results are shown in Tables 1, 2, 3. In each table, the bytes
order is assumed as from left to right and from top to bottom. Similarly, we can use LFSRs whose clocks are eight
times as fast as that of KG, the results are the same, we omit them.

 张斌 等:关于三个流密码的安全性 1351

Table 1 The 100 input message bytes
b0 aa f7 3c af b8 ca ae f6 57
2b dd 17 6a fc 45 15 c4 69 7f
a5 59 20 13 39 19 12 06 2e 23
8f 75 3d 16 a8 c1 5b 3b d4 14
97 30 dd 08 73 80 c6 6a 35 54
1a ce ba cc aa a1 35 f0 c9 42
0e 1e 9b f9 0b 2e 20 34 ac 0c
1c 4a 18 54 1e 90 34 d9 33 ff
bf 23 67 cf be 97 ed c5 f0 80
d1 20 65 55 18 b4 e1 11 72 e2

Table 2 The 100 ciphertext bytes
86 6d 6e 0f dd 3b bb 20 3b 5e
58 8d d2 94 f8 6f 74 5e 92 35
41 f2 16 cc ad 7a 2e 88 cc a3
82 26 37 54 01 73 5c 0c cc b9
0f d8 b6 4f b9 1b b5 4f 95 e4
60 3b fe f2 8a c6 74 64 76 80
93 df a3 fe 5e 4a 9f fe ad a5
0a 3d cc af 63 35 88 c1 a4 94
6b f1 e2 c2 64 25 c4 93 a2 f3
f9 ed 28 40 11 0c 2f 8f ba 36

Table 3 The 100 decrypted bytes
b0 05 f7 64 1c 05 c4 25 ab af
58 ce 55 30 67 0a a0 a4 23 19
96 cc 63 17 81 19 12 06 2e 23
5b b7 bd 6b 0e 53 f1 ff 8a 14
97 30 b6 19 6c 89 0b 7c f7 03
97 ea e5 66 af 99 35 f0 9f 90
d1 b3 a1 b5 3e e1 7c 42 9e ca
a5 ad 87 91 96 df bb 39 80 59
4c e8 84 fc 5a 5b 28 36 8e 3f
37 69 0a 47 ae 64 97 bf 0a ac

We can see from above tables that the decrypted bytes are hardly the same as those in the corresponding input
messages, which illustrates that the stream cipher S3 cannot decrypt correctly in general.

4 Conclusions

In this paper, we analyze three stream ciphers S1, S2 and S3 designed for GSM security applications. Our
results show that both S1 and S2 are vulnerable to the known-plaintext attacks and S3 cannot decrypt correctly.
Hence, the three stream ciphers should not be used in practice. It is an interesting problem and our future work to
improve these three stream ciphers against the attacks in this paper.

References:
[1] Mouly M, Pautet MB. GSM protocol architecture: Radio subsystem signaling. In: Proc. of the 41st IEEE Vehicular Technology

Conf. 1991.

[2] Scourias J. A brief overview of GSM. 1994. http://kbs.cs.tu-berlin.de/~jutta/gsm/js-intro.html

[3] Lo CC, Chen YJ. Stream ciphers for GSM networks. Computer Communications, 2001,24(11):1090−1096.

[4] Lo CC, Chen YJ. Secure communication mechanisms for GSM networks. IEEE Trans. on Consumer Electronics, 1999,45(4):1074

−1080.

[5] Biryukov A, Shamir A, Wagner D. Real time cryptanalysis of A5/1 on a PC. In: Schneier B, ed. Fast Software Encryption 2000.

LNCS1978, New York: Springer-Verlag, 2001. 1−18.

[6] Biham E, Dunkelman O. Cryptanalysis of the A5/1 GSM stream cipher. In: Roy B, Okamoto E, eds. Progress in Cryptology-

INDOCRYPT 2000. LNCS1977, 2000. 43−51.

	Introduction
	Three Newly Proposed Stream Ciphers
	Key generator (KG)
	Stream cipher S1
	Stream cipher S2
	Stream cipher S3

	Cryptanalysis of the Three Stream Ciphers S1, S2, S3
	A known-plaintext attack on S1
	An known-plaintext attack on S2
	Analysis of the stream cipher S3

	Conclusions

