1000-9825/2005/16(07)1344 ©2005 Journal of Software %% 1 % R Vol.16, No.7

XF=AREEHREMS
¥ #" 6EEL SEE. & &

(e B A RIS S = (P R B BRSUERR), AL 100049)
?(Institute for Infocomm Research, 119613, Singapore)

On the Security of Three Stream Ciphers

ZHANG Bin'", WU Hong-Jun®>, FENG Deng-Guo', BAO Feng’

!(State Key Laboratory of Information Security (Graduate School, The Chinese Academy of Sciences), Beijing 100049, China)
*(Institute for Infocomm Research, 119613, Singapore)

+ Corresponding author: Phn: +86-10-88258713, Fax: +86-10-88258713, E-mail: mzb_123@hotmail.com, http://www.is.ac.cn
Received 2004-02-13; Accepted 2004-10-09

Zhang B, Wu HJ, Feng DG, Bao F. On the security of three stream ciphers. Journal of Software, 2005,16(7):
1344-1351. DOI: 10.1360/jos161344

Abstract: In this paper three newly proposed stream ciphers S1, S2 and S3 are analyzed. These stream ciphers are
designed with respect to different levels of GSM security. The results show that both S1 and S2 are vulnerable to the
known plaintext attacks and S3 can not decrypt correctly. With negligible amount of computation and few known
keystream bytes, S1 and S2 can be broken completely. Furthermore, simulation results show that S3 cannot work
correctly. The conclusion is that these stream ciphers are either extremely weak or poorly designed so that they
cannot play the role as the designers hope in GSM network security.

Key words: stream cipher; security; GSM network; linear feedback shift register; bytes

W OE: A3 /\%frm;w 8 RE D S1,82 B S3 HEAT T /o AH7 .3X 3 AN AHGR T F T GSM M %0 5| 53 2t &
%X\rﬂé’a«r; MR 4E R A, ST Fw S2 #i 5% LA L &, M S3 FEEAME REV ENEXLFHATUL
g+ - uﬁ%'ﬁié}f}iﬁﬁ‘ S1 Fo S2AEI F otk R £ W ,S3 RALEEM TAF 26X IANAERE LR LNE 24
AT A M;ﬁfﬁw e R ELE GSM W &34 77 B g it B A 28 A &,

KEBIR: AEA AN GSM W% XM RS F 45,57

hESESES: TP309 XEKFRIRAD: A

* Supported by the National Natural Science Foundation of China under Grant No.60273027 (IH % (448 %}2% 3£ 4x); the National
Grand Fundamental Research 973 Program of China under Grant No.G1999035802 (¥ 5% &y FEfliiff 57 & & M %11(973)); the National
Science Fund of China for Distinguished Young Scholars under Grant No.60025205 ([E 2% A% H 5 4 24 5 Rl 22 3 4)

ZHANG Bin was born in 1976. He is a Ph.D. candidate at the State Key Laboratory of Information Security, Graduate School of
the Chinese Academy of Sciences. His current research interests include analysis and design of stream ciphers. WU Hong-Jun was born
in 1974. He is an Associate Scientist at the Institute for InfoComm Research, Singapore. His researches areas are cryptography and
information security. FENG Deng-Guo was born in 1965. He is a professor and doctoral supervisor at the State Key Laboratory of
Information Security, Graduate School of the Chinese Academy of Sciences. His research areas are information security and network
security. BAO Feng was born in 1962. He is a Leading Scientist at the Institute for InfoComm Research, Singapore. His research areas
include cryptography, distributed computing and automata theory.

© rhiEpk

Bt FI9TET httpy/ www. jos. org. cn

R F X TFEANAFA bR 1345

1 Introduction

Mobile communication has become an indispensable part of ordinary life in today’s world. People can
communicate with each other anywhere and anytime through mobile phones. However, the openness of wireless
communications has caused many security problems. It is now believed that the security service is essential to the
success of a mobile communication network. The Global System for Mobile Communications (GSM)!"" is the
standard for digital mobile communications. It involves a set of security features such as applying stream cipher A5
in encryption/decryption.

Due to the fact that the A5 algorithm recommended in GSM standard is a proprietary algorithm and A5/1 is
subject to export control, many efforts have been made towards designing new non-proprietary encryption
algorithms. In Refs.[3,4], three stream ciphers are proposed for GSM applications. So far, we do not see any
analysis of these three stream ciphers elsewhere. They are claimed to be efficient and secure. However, we will
show in this paper that the three stream ciphers proposed are either extremely weak or poorly designed. Both S1 and
S2 are vulnerable to known plaintext attacks and S3 cannot decrypt correctly. With negligible amount of
computation and few known keystream bytes, S1 and S2 can be broken completely.

The organization of this paper is as follows: first we will give a review on the three newly proposed stream
ciphers in section 2, especially on the key generator and two operation modes of stream cipher S2. Our analysis is
presented in section 3 including the theoretical complexities to break S1, S2 and the experimental results illustrating

the decryption failure of S3. Finally, some conclusions are given in section 4.

2 Three Newly Proposed Stream Ciphers

GSM is the first mobile communication system that has comprehensive security features. The A5 algorithm is a
proprietary algorithm used in GSM for message encryption/decryption. Since A5/1 algorithm is subject to more and

1561 many efforts have been made to design new stream ciphers for GSM network. In

more suspicions on its security

Refs.[3,4] the authors proposed three simple stream ciphers S1, S2, S3 to substitute the A5 algorithm with respect to

different levels of security. Unfortunately, as we will show below, the three stream ciphers are all poorly designed.
We will give a complete description of the three stream ciphers S1, S2 and S3 in the following. The three

stream ciphers are all based on the following key generator (KG).
2.1 Key generator (KG)

For an initial keystream of length [/ bytes, (My,My,...,M; |), and an input message of length n bytes,
(mg,my,...,m, 1), the keystream (Ky,Kj,...,K, ;) of length n bytes, is generated according to the following
procedures:

Step 1. Let i=0, /=0, N=170, cc=0;

Step 2. Compute M/:(M/Jrcc)rnodZX; If j=0 then M=M;®N; else M=M,®M,_;;

Step 3. Let K=M;; N:(N+m,~)m0d28; i=i+1; j=j+1; cc=cc+1;

If j=I then reset j to 0;

If cc=256 then reset cc to 0;

If i=n then exit; else goto Step 2,
where N is an eight-bit string used to change M, by XOR operation at the beginning of each cycle; @ denotes
bit-wise XOR. cc is a number added to M; (j=0,...,/-1) so as to increase the randomness of M;. Note that the initial
value of cc and N can be any number from 0 to 255. In the above design, take the number 170 (10101010), as the

default value of N and 0 as the default value of cc.

© hEE

AT hupy/ www. jos. org. cn

1346 Journal of Software #AFFIR 2005,16(7)

2.2 Stream cipher S1

The stream cipher S1, as shown in Fig.1, consists of the KG and an XOR operator. The ciphertext (c;) is
obtained by XOR between the input message (m;) and the output (K;) of KG on a byte-by-byte basis.

M
A 4
M
Key generator (KG)
Key generator (KG)
K;
y
K LFSR-1 |
»D > K';
m; Ci
i 9. e
Fig.1 The stream cipher S1 Fig.2 The stream cipher S2

The initial keystream M is random, and the control parameters M, N and cc are securely protected.
2.3 Stream cipher S2

To increase the randomness of the generated keystream of key generator (KG), in Ref.[3] the authors proposed
the following stream cipher S2, as shown in Fig.2. It consists of
the KG, the LFSR-1, and two XOR operators, where the
Key generator (KG) LFSR-1 is a maximum-length LFSR with tap sequence
(32,7,6,2,0).
\LFSR.I \ The keystream K'; is obtained by using XOR operation
between the output of KG and the output stream of LFSR-1.
/‘ The ciphertext (c;) is the outcome of the XOR operation

’LFSR-1

between the message bytes (m,) and the keystream bytes (K';).
The keys of stream cipher S2 are the initial state of LFSR-1 and

SLFSR-1 f the secret parameters of KG.

In general, there are two operation modes of stream cipher
o > S2, Fig.3 shows the mode 1.
Mode 2: instead of using eight parallel LFSR-1s as in

Fig.3 Mode I of stream cipher S2 mode 1, this mode is just the direct implementation of S2 with

the clock of LFSR-1 eight times as fast as that of KG.
2.4 Stream cipher S3

This cipher is designed as the most reliable stream cipher for GSM applications. It consists of the KG, two
LFSRs, and three XOR operators. The two LFSRs are maximum-length LFSRs with known tap sequences (33,13,0)
and (37,6,4,1,0) respectively. As Fig.4 shows, this cipher works according to the following rule:

Step 1. If (K;®m;)mod2 is 1, then the LFSR-2 is clocked;

Else (K;®m;)mod2=0, then the LFSR-3 is clocked;

Step 2. The keystream K'; is obtained by using XOR operation between the output of the LFSR-2 and the

output of LFSR-3;

Step 3. The ciphertext, (c;), is obtained by using the XOR operation between the input message, (m;), and the

keystream (K';) on a byte-by-byte basis.

© R

http:/ www. jos. org. cn

R F X TFEANAFA bR 1347

Key generator (KG)
J X LFSR-2
14

Blry— LFSR-3

Fig.4 The stream cipher S3

The keys of stream cipher S3 are the initial states of the LFSR-2, LFSR-3, and the secret parameters of the KG.
The security level of the stream ciphers S1, S2, S3 is in an ascending order with S3 having the highest level of
security. In Ref.[3], the authors conclude that if the initial keystream M being random, then all the three stream

ciphers are secure. However, as we will show below that it is not true.

3 Cryptanalysis of the Three Stream Ciphers S1, S2, S3

In this section, we will break the stream ciphers S1, S2 and show that the stream cipher S3 can not correctly
decrypt. Since known-plaintext attack is the most basic attack that a good stream cipher should resist successfully,

we will simply implement this kind of attack on these three stream ciphers.
3.1 A known-plaintext attack on S1

Note that S1 is the direct implementation of the key generator to encrypt messages and there are no
complicated nonlinear permutations used in this cipher. This is S1°s vital flaw. Assume that the key of S1 consists of
the initial keystream (My,M,,...,M; ;) and the secret parameters N and cc. We know a segment of the generated
keystream (K;). Our task is to recover the key from the known segment of (K;). Note that we process on a
byte-by-byte basis.

We have following equations according to the description of KG:
my ®c, =K, =M, +cc)®N
m @c, =K, :(M1 -J—c’c-i—l)(-DK0
m_@c_ =K_ =(MH+cc-t-l—l)(-BKF2 1
m ®c, =K, =(K0 +cc+l)®(N+m0 +...+mH)

m, ®cy =K., =(K +cc+l+1)®K,

where @ denotes bit-wise XOR and + denotes mod2® addition. m; and ¢; denote the ith bytes of the messages and

ciphertexts, respectively. From (1) we get:
m,.@c[@m[ﬂ@cm:(+cc+i+1),0£i§l—2

ml@cl=K,=(K0+cc+l)®(N+m0+,..+mH) 2)
m, ®c,, =K, =(K, +cc+1+1)®K,

i+l

Thus we can recover cc from the last equation of (2) by an exhaustive search through {0,1}® which is

computationally negligible. Then from the second last equation of (2) we can also restore N by an exhaustive over

© hEE

HOFIFFIT hetps/ www. jos. org. cn

1348 Journal of Software #AFFIK 2005,16(7)

{0,1}*. The computation amount is also negligible. With the knowledge of N and cc, we can simply recover the
initial keystream (My,M,,...,M,_;) using [exhaustive searches through {0,1}% thus the total complexity of above

procedures is O(/) with /+2 bytes of keystream known, which means the stream cipher S1 is extremely weak.
3.2 An known-plaintext attack on S2

We first focus on the operation mode 1 of S2. Assume that the 'LFSR-1 corresponds to the least significant bit
of the output byte. We know a segment of the generated keystream and the feedback polynomial of LFSR-1. Our
aim is to recover the initial states of the eight LFSRs and the initial keystream M, secret parameters N and cc.

Our basic technique is that when adding (x+y)m0d28, it has the same effect as x0®y0 with respect to the least
significant bits x° and)°, where ® denotes the XOR operation. Thus we have:
ml®c) =K ®x) =M ®cc’ ®N’ Dx!
m ®@c) =K' ®x =M ®cc’ DIDK, ® x|

ml ®c), =K, ®x!" =M ®cc’ ®(1-1), K", D x)
m@c =K' ®x' =K' ®cc’ ON ©@ml ®---®m’, ®xl ®(1),
ml, @®ct, =K>, ®x" =K' @cc’ ®(+1), ® K @ x

3)

m ®c’ =K%, ®xV =K @cc’ ®IOKL, ®x7

with respect to 'LFSR-1, where x'; denotes the ith output bit of '"LFSR-1 and (®), denotes the least significant bit of
the argument’s binary representation. Note that here m?,c’,K,N° cc’ denote the least significant bits of
corresponding bytes. Matching the ith and the (i+/)th equation of (3) together for 0<i</—-1, we have:

ml@cl@m! ®c! =x! Dxl Dec’ ®(),ON ©@m) ®...Om’,
m’@®c! dm, dcl, =x] Dec® ®(+1), @(mg ®c) @xlo)@ X @
m), ®c), ®m)_ Dcd =x" Dec’ (-9(21—1)2 G—)(mlof2 gk @x{fz)(-B !

There are altogether four combinations for the value of (cco,N 0). We can try every combination, for it actually
has no effect on the total complexity of our attack. So we can safely deal with the situation that (ccO,N 0) is known.
In this case, we can transform the variables x| with i >32 in (4) into linear combinations of (xlo,xll,...,xfl). For

GSM applications where />>32, we can get 32 linearly independent equations from above equation system with
overwhelming probability. Then we solve these linearly independent equations to recover the initial state

(xlo,xll,...,xf‘]) of 'LFSR-1. With the knowledge of (xlo,xll,...,xf]), we can easily recover the least significant bits

(MS,MIO,...,MB]) according to (3).
So far, we have restored the following initial values (xlo,xll,...,xfl), (ccO,NO) and (MS,MIO,...,M,O,I). Note

that with the knowledge of the least significant bits, we can get the carry to forward bits when adding (x+y)mod2®.
Thus we can get similar equation systems as (3) with respect to the second least significant bits. Assume we have
got the ith least significant bits and the initial state of “'LFSR-1, then with respect to the i+1th least significant bits
and the initial state of "?LFSR-1 with 0<i<6 we have:

© hEE

AT hupy/ www. jos. org. cn

R F X TFEANAFA b 1349

gy it iy 0 i1 i+1 iy L0
my" @cy” =K)" ®x;p, =My @ec™ @4, ONT Dx

i+2 i+2
i+1 i+1 i+1 1 i+1 i+1 i+1 1
m" @ =K" ®x;,=M" ®cc ®4, 0K, Dx,,,
i+l i+l _ pritl 1-1
mL @y =K ®x;,,
i+1 i+1 i+1
m" @t =K ®x

!
i+l i+l i+l I+
my; ®cpy =K, @x

=M @™ @4, K D))
=K' ®cc" D4, ON" DBDx.,,

i+2
_ i+l i+l i+l I+1
i =K @cc” @4, 0K, Dx;);

i+l i+l i+l 21-1 _ i+l i+l i+l 21-1
my @cy =K Ox, =K @cc™ @4, @K, Dx;y,

i+2

where 4; and B denote the carriers such that: for 0< j</-1, 4; is the carry to the i+1th bit calculated from

(jm0d2x)Z +(M;,M’/'.’],...,M?)2 +(cc',cc"’l,...,cc°)2; for /< j<2I-1, 4; is the carry to the 7+1th bit calculated

from
(j mod28)2 + (K;,Z,K;:ll,...,K?_,)z +(cc",cc"71,...,cc0)2 (6)
B is the carry to the i+1th bit calculated from
(VN N+ S i m), %)

Note that all the 4;s and B can be easily calculated from the known information. Thus we will regard them as known
and ¢/ in (5) denote the i+1th least significant bits of the

parameters. Other parameters such as K", m"

corresponding jth bytes. x/,, denotes the jth output bit by the "2 FSR-1. Matching the ith and the (i+l)th

equations of (5) together for 0<i</-1, we have:

i+1 i+l i+l i+l _ 0 1 i+1 i+1
my” @cy” @m” @c” =x,,Px,,Pcc” DA, OBON

i+l i+l i+l i+l _ 1 i+1 i+l i+l 0 I+1
m @ @m, Dcpy =x;,, e D4, O (mo Dc, By)@ Xis2

. ®)

i+l i+l i+l i+l -1 i+l i+1 i+l -2 21-1
m @l Omy @y =x, Do @4y, © (mzfz D¢, Oxp;)@ Xiva

Because there are only four combinations of the value (cc"”,N"”), we can simply try every combination
which has actually no effect on the total complexity of our attack. So we can also deal with the situation that
(cci+],N’+]) is known. In this case, we can transform the variables x/, with j>32 in (8) into linear

combinations of (xﬁz,xlhz,...,xffz). For GSM applications where [>>32, we can get 32 linearly independent

equations from above equation system with overwhelming probability. Then we solve these linearly independent
equations to recover the initial state (x?+2,x}+2,...,xf+12) of "?LFSR-1. With the knowledge of (x?+2,xl.l+2,...,xi3+12), we
can easily recover the least significant bits (Mé” M ,...,Ml’:]) according to (5). The following is our total attack:
Parameters: feedback polynomial with tap sequence (32,7,6,2,0);
Step 1. input the value of /;

Derive a linear equation system of 2/ linear equations from the first 2/ bytes of keystream as in (3)
and solve it to get the initial values (xlo,x]l,...,xfl), (cco,No) and (Mg,MIO,...,Mﬂl);

Step 2. Compute 4; and B, for 0< j <2/-1, from the known bits;
for i=0 to 6
Derive a linear equation system of 2/ linear equations from the first 2/ bytes of keystream as in (5);

. e 1 1
Derive a linear equation system of 32 linear equations on the initial state (xgz,x‘.ﬂ,.,.,xiz) and

© rhiEpk

Bt FI9TET httpy/ www. jos. org. cn

1350 Journal of Software #AFFIK 2005,16(7)

guess the value of (cc”l,N"“)to solve this system;
Deduce (M, M. .M[").

Since the complexity of solving a system of 32 linear equations is only constant magnitude, the total
complexity of above attack is O(1) with 2/ known keystream bytes, which means the operation mode 1 of stream
cipher S2 is extremely weak too.

As for the operation mode 2 of stream cipher S2, it is simply to substitute the variables x| for x’ in the

equation system (3) to determine the least significant bits of (MO,M1 ,...,MH) as follows:

my®cy =Ky ®x) =My ®cc’®N° D x)
m ®c! =K ®x =M ®cc’ DI®K) ® x™

ml, ®c’, =K, ®x{V =M @cc’ ®(-1), DK, ® x5
m @ =K' ®x =K ®cc"®N @md ®---@&m?, ®x¥ ®(1),
ml, ®c, =K°, @x' =K' ®cc’ ®(1+1), DK ® x}+Y

©

md @, =K%, ®x =K’ @cc’ @1OKL, ®x¥

The procedures for solving (9) are the same as those for solving (3) of mode 1, so we omit them. When determining
the i+1th least significant bits with the knowledge of jth (j< i) least significant bits, we simply substitute the

Jj+8k

variables x/, for x; with 0 <k <2/—-1. Other procedures are the same as those in mode 1, we omit them

i+2

too. The complexity of our attack on mode 2 is also O(1) with 2/ known keystream bytes, thus we can safely affirm

that the stream cipher S2 is so weak in security that it should not be used in GSM applications.
3.3 Analysis of the stream cipher S3

In this section, we will show that the proposed stream cipher S3 can not decrypt correctly. From Fig.4, we can
see that the two LFSRs work in a stop/go manner whose clocks are controlled by the XOR outcome of K; and m;.
Since S3 works in a self-synchronization fashion, it is obvious that if the same initial states and the same initial
keystream are enclosed into the two LFSRs and the key generator respectively, then the clock behaviours of LFSR-2
and LFSR-3 on the receiver side are not the same as those on the sender side. Thus in general the output of the XOR
outcome K'; on the receiver side is not the byte encrypted to the message byte m;, which means S3 cannot decrypt
correctly. On the other side, if one wish to choose the initial states of the two LFSRs and the initial keystream of the
key generator in such a way that on the receiver side it can decrypt correctly, then he will be confronted with the
problem that without the knowledge of the message m;, he has to simulate the correct clock behaviour that can
decrypt the ciphertext ¢;, which is impossible for practical applications.

Experimental results. We have made simulation experiments to test the stream cipher S3 in C language on a
Pentium 4 2.5GHz processor. All the experimental results show that S3 cannot decrypt correctly. Here we only list
the results of mode 1 which apply eight parallel LFSRs for LESR-2 and LFSR-3 respectively. The tap sequences of
the two LFSRs are (33,13,0) and (37,6,4,1,0) respectively. We use RC4 as random noise source to provide the initial
states of the LFSRs and the initial keystream of KG. The results are shown in Tables 1, 2, 3. In each table, the bytes
order is assumed as from left to right and from top to bottom. Similarly, we can use LFSRs whose clocks are eight

times as fast as that of KG, the results are the same, we omit them.

© hEE

AT hupy/ www. jos. org. cn

R F X TFEANAFA bR

1351

Table 1 The 100 input message bytes

b0 aa f7 3¢ af b8 ca a fo 57
2b dd 17 6a fc 45 15 4 69 If
a5 59 20 13 39 19 12 06 2 23
8f 75 3d 16 a8 ¢l 5b 3b d4 14
97 30 dd 08 73 80 c¢6 6a 35 54
la. ce ba cc aa al 35 f0 c¢9 42
0Oc le 9 9 O0b 2e¢ 20 34 ac Oc
Ic 4a 18 54 1le 90 34 d9 33 ff
bf 23 67 cf be 97 ed 5 f0O 80
dl 20 65 55 18 b4 el 11 72 €2
Table 2 The 100 ciphertext bytes
8 6d 6e Of dd 3b bb 20 3b Se
58 8 d2 94 f8 6f 74 5S¢ 92 35
41 12 16 cc ad 7a 2 88 cc a3
82 26 37 54 01 73 5¢ 0Oc cc b9
of d8 b6 4f b9 1b b5 4f 95 4
60 3b fe 2 8a c¢6 74 64 76 80
93 df a3 fe S5¢ 4a 9f fe ad a5
0Oa 3d cc af 63 35 88 cl a4 94
6b fl e2 ¢2 64 25 ¢4 93 a2 f3
f9 e 28 40 11 Oc 2f 8f ba 36
Table 3 The 100 decrypted bytes
b0 05 f7 64 1lc 05 4 25 ab af
58 ce 55 30 67 0a a0 a4 23 19
96 cc 63 17 81 19 12 06 2e 23
5b b7 bd 6b 0e 53 fl ff 8a 14
97 30 b6 19 6 8 Ob 7c 7 03
97 ea e5 66 af 99 35 {0 9f 90
dl b3 al bS5 3¢ el Tc 42 9e¢ ca
a5 ad 87 91 96 df bb 39 80 59
4c e8 84 fc Sa S5b 28 36 8 3f
37 69 0a 47 ae 64 97 bf Oa ac

messages, which illustrates that the stream cipher S3 cannot decrypt correctly in general.

4 Conclusions

We can see from above tables that the decrypted bytes are hardly the same as those in the corresponding input

In this paper, we analyze three stream ciphers S1, S2 and S3 designed for GSM security applications. Our

results show that both S1 and S2 are vulnerable to the known-plaintext attacks and S3 cannot decrypt correctly.

Hence, the three stream ciphers should not be used in practice. It is an interesting problem and our future work to

improve these three stream ciphers against the attacks in this paper.

References:

(1]

Mouly M, Pautet MB. GSM protocol architecture: Radio subsystem signaling. In: Proc. of the 41st IEEE Vehicular Technology

Conf. 1991.

Scourias J. A brief overview of GSM. 1994. http://kbs.cs.tu-berlin.de/~jutta/gsm/js-intro.html

Lo CC, Chen Y]J. Stream ciphers for GSM networks. Computer Communications, 2001,24(11):1090-1096.

Lo CC, Chen YIJ. Secure communication mechanisms for GSM networks. IEEE Trans. on Consumer Electronics, 1999,45(4):1074

—-1080.

Biryukov A, Shamir A, Wagner D. Real time cryptanalysis of A5/1 on a PC. In: Schneier B, ed. Fast Software Encryption 2000.
LNCS1978, New York: Springer-Verlag, 2001. 1-18.

Biham E, Dunkelman O. Cryptanalysis of the A5/1 GSM stream cipher. In: Roy B, Okamoto E, eds. Progress in Cryptology-

INDOCRYPT 2000. LNCS1977, 2000. 43-51.

© PR

http:/ www. jos. org. cn

	Introduction
	Three Newly Proposed Stream Ciphers
	Key generator (KG)
	Stream cipher S1
	Stream cipher S2
	Stream cipher S3

	Cryptanalysis of the Three Stream Ciphers S1, S2, S3
	A known-plaintext attack on S1
	An known-plaintext attack on S2
	Analysis of the stream cipher S3

	Conclusions

