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Abstract: Linear complexity is an important design index for assessing the cryptographic strength of a sequence. 
Pseudorandom sequences with large linear complexity and large k-error linear complexity is a hot topic in 
cryptography and communications. Niederreiter found many such periodic sequences over Fq firstly. In this paper, 
the authors construct some periodic sequences over Fq with very large 1-error linear complexity by the GDFT of a 
periodic sequence. The result is much better than the known ones. 
Key words: periodic sequence; GDFT; linear complexity; 1-error linear complexity 

摘  要: 线性复杂度是衡量序列密码学强度的重要指标,设计具有大的线性复杂度和 k-error线性复杂度的序列是

密码学和通信中的热点问题.Niederreiter 首次发现了 Fq上许多满足这个要求的周期序列.通过序列的广义离散傅立

叶变换构造了一些 Fq上具有极大 1-error 线性复杂度的周期序列,这些结果远远优于已知的结果. 
关键词: 周期序列;广义离散傅立叶变换;线性复杂度;1-error 线性复杂度 
中图法分类号: TP309  文献标识码: A 

Pseudorandom sequences have been used widely in communications and cryptography. These sequences are 
required to have certain properties: long period, two-level autocorrelation, large linear complexity and etc. Let S be 
a sequence of linear complexity L over Fq, where L is the least order of a linear recurrence relation satisfied by S, 
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the well known B-M algorithm needs only 2L elements to determine the LFSR which can generate S[1]. Hence, the 
linear complexity is an important index for assessing the cryptographic strength of a pseudorandom sequence. 

Ding and Stamp independently proposed the new concept of k-error linear complexity which is the 
generalization of linear complexity[2,3]. A sequence with large k-error linear complexity not only has a large linear 
complexity, but also has the feature that altering up to k terms should not cause a significant decrease of the linear 
complexity. Much work has been done on this topic[2−9]. In the next section, we will give the formal definition of 
k-error linear complexity.  

Kolokotronis, Rizomiliotis and Kalouptsidis discussed the determination of the minimum linear complexity 
sequence which is got from a given binary sequence with period 2n−1 by at most one symbol substitution[5]. They 
presented three methods for this problem: the sequential division method, the congruential equations, and the phase 
synchronization method. However they only gave some guidelines on sequence design. Niederreiter proved the 
existence of periodic sequences which have large k-error linear complexity when k over a finite field is small[6], but 
there are too many constraints on the period N. 

In this paper, we construct some periodic sequences with large linear complexity and large 1-error linear 
complexity over Fq by the generalized discrete Fourier transform(GDFT) of a periodic sequence. This result is 
better than that of Ref.[6] and extends the result of Ref.[5]. In Section 2, we briefly introduce some notations. In 
Section 3, we drive the main result. Finally, section 4 contains the conclusions. 

1   Notations and Preparations 

Let S=s0,s1,s2,… be a sequence over a finite field Fq. If Si=Si+N for all i≥0, we call it N-periodic. Because S is 

completely determined by its first N terms, we can describe  by . The polynomail  is 

defined as S . 
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Firstly, we will give the formal definition of k-error linear complexity of periodic sequence below. 
Definition 1. Let  be an N-periodic sequence over  and k be an integer with , 
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Definition 2. Let S  be an N-periodic sequence over F∞
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From now on, we denote as the characteristic of Fp q. In accordance with Ref.[10], the authors of Ref.[8] give 

the following definition. 

Definition 3 [ . The GDFT of the  is defined to be the  
matrix of the Hasse derivatives, where 
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The GDFT of a periodic sequence over Fq is indeed an invertible transformation, which is shown in Ref.[10]. 
If , then 1),gcd( =pN α  is a primitive th root of unity and the GDFT of an -tuple reduces to the discrete 

Fouier transform (DFT) of the same N-tuple.  

N N

The following lemma is the basis for our result in this paper. 
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where α  is any primitive th root of unity and  if n 0=







j
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Now we need the following useful definition. 

Definition 4 [ . The Günther weight of a matrix is the number of its entries that are nonzero or that lie below a 
nonzero entry. 

]8

The proposition below states the important relationship between the linear complexity of the -periodic 
sequence  and the (G)DFT of the corresponding N-tuple . 
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2   Main Results 

We have the following lemma from Ref.[8], and it will give us more information about the structure of the 
GDFT of an N-tuple. Note that cyclotomic cosets will be considered relative to powers of q in the following. 

Lemma 2 [ . For an integer ]8 10 −≤≤ nj , let the integer 10 −≤≤ nk  be an element of the cyclotomic coset 

 of jC j  modulo n, i.e.,  for some integer . Let nr modjqk ≡ 0≥ Cr jj l=|| , then for any , we 
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-dimensional column vectors, one vector for each cyclotomic coset. The components of the column vector 

corresponding to the cyclotomic coset C  are in . Hence, any GDFT uniquely corresponds to a  

matrix M, where the entries in the ith column of M are in . The number of different matrices of this form is 

 which is just the number of all -periodic sequence over . So we have the 
following important lemma. 
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Lemma 3 [ . There is a bijection from the set of all -periodic sequence over F]8 N q onto the set of all matrices 
in GDFT form. 

Suppose  is a -periodic sequence over F∞
−= ),...,,,( 1210 NssssS
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Remark 1.1. The condition  is loose:  when ;  when . The condition in 

Ref.[6] is . It is stricter. 
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jj <′≤2 . We can select  since l . The remaining part of this 

proof is the same as Theorem 1. Then 
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Remark 2.1. If n is prime and the order of 2 modulo n is =n−1, then theorem 2 is trivial. At that time, 
h=2, },0{,1 21 =− CC . 
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3   Conclusions 

By the GDFT of a periodic sequence, we construct some periodic sequences over Fq with very large 1-error 
linear complexity in this paper. Our result has less constraints on the period N of the corresponding sequence, and 
can also extend the result of Ref.[5] (In Ref.[5], only binary sequence of period 2n−1 is considered). We also show 
that (G)DFT of the periodic sequence is a powerful tool for sequence research. But how to get the sequence from its 
(G)DFT easily is another important problem. Furthermore, how to construct periodic sequences over Fq with large 
k-error linear complexity (k≥2) by (G)DFT is also an interesting problem. 
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