1000-9825/2005/16(05)0940 ©2005 Journal of Software %% 1 % R Vol.16, No.5

F, FEBRXK 1-error LMEEZXERIREFS
Hag'r LEE!

V(M R T A R N S (P R BT AT A ), A6 5T 100049)
Y(hE R BT, IR 100080)

Periodic Sequences with very Large 1-Error Linear Complexity over F),

HU Hong-Gang'**, FENG Deng-Guo'

!(State Key Laboratory of Information Security (Graduate School of the Chinese Academy of Sciences), Beijing 100049, China)
*(Institute of Electronics, The Chinese Academy of Sciences, Beijing 100080, China)

+ Corresponding author: Phn: +86-10-88256432 ext 64, E-mail: hg_hu@]163.net, http://home.is.ac.cn

Received 2003-06-23; Accepted 2003-11-10

Hu HG, Feng DG. Periodic sequences with very large 1-error linear complexity over F,. Journal of Software,
2005,16(5):940-945. DOI: 10.1360/jos160940

Abstract: Linear complexity is an important design index for assessing the cryptographic strength of a sequence.
Pseudorandom sequences with large linear complexity and large k-error linear complexity is a hot topic in
cryptography and communications. Niederreiter found many such periodic sequences over F, firstly. In this paper,
the authors construct some periodic sequences over F, with very large 1-error linear complexity by the GDFT of a
periodic sequence. The result is much better than the known ones.
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Pseudorandom sequences have been used widely in communications and cryptography. These sequences are
required to have certain properties: long period, two-level autocorrelation, large linear complexity and etc. Let S be

a sequence of linear complexity L over F,, where L is the least order of a linear recurrence relation satisfied by S,
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the well known B-M algorithm needs only 2L elements to determine the LFSR which can generate St"!. Hence, the
linear complexity is an important index for assessing the cryptographic strength of a pseudorandom sequence.

Ding and Stamp independently proposed the new concept of k-error linear complexity which is the
generalization of linear complexity™*. A sequence with large k-error linear complexity not only has a large linear
complexity, but also has the feature that altering up to k terms should not cause a significant decrease of the linear
complexity. Much work has been done on this topicl>™. In the next section, we will give the formal definition of
k-error linear complexity.

Kolokotronis, Rizomiliotis and Kalouptsidis discussed the determination of the minimum linear complexity
sequence which is got from a given binary sequence with period 2"—1 by at most one symbol substitution’®’. They
presented three methods for this problem: the sequential division method, the congruential equations, and the phase
synchronization method. However they only gave some guidelines on sequence design. Niederreiter proved the
existence of periodic sequences which have large k-error linear complexity when k over a finite field is small®, but
there are too many constraints on the period N.

In this paper, we construct some periodic sequences with large linear complexity and large 1-error linear
complexity over F, by the generalized discrete Fourier transform(GDFT) of a periodic sequence. This result is
better than that of Ref.[6] and extends the result of Ref.[5]. In Section 2, we briefly introduce some notations. In

Section 3, we drive the main result. Finally, section 4 contains the conclusions.
1 Notations and Preparations

Let §=5¢,51,52,... be a sequence over a finite field F,. If §=S;;y for all >0, we call it N-periodic. Because S is

completely determined by its first N terms, we can describe S by §=(s,,s,,5,,...,5y,)” - The polynomail §"(x) is

defined as " (x) = 5, + 5,5+ 5,x> +... 45, x" .

Firstly, we will give the formal definition of k-error linear complexity of periodic sequence below.
Definition 1. Let S =(s,,s,,s,,..,sy,)" be an N-periodic sequence over r, and k be an integer with 1<k<n,

then the k-weight-error linear complexity ¢ sy of S is minZ(T), where the minimum is extended over all
o T

N-periodic sequences T =(t,,t,,t,,....ty,)" over F, for which the Hamming distance of (s),s,,s,,....sy_) and
(ty>t)sty5nty ) 18 €Xactly k.

Definition 2. Let S=(s,,s,,s,,.,5y,)° be an N-periodic sequence over F, and k be an integer with
1<k < N, then the k-error linear complexity £, ,(s) is defined as min Cy 4 (5) -

The definitions above are also contained in Ref.[6].
Let F[x] denotes the ring of polynomials with coefficients in a field F, and g(x)zziaix' e F[x]. For any

integer >0, the ¢th Hasse derivative of g(x) is defined as gl(x) :Z[ljaix"” . It is easy to verify that
—\ ¢
g0 (x)=1gM(x), where g (x) isthe ¢ th usual formal derivative of g(x). When =1, ¢®(x) = g ().
From now on, we denote p as the characteristic of F,. In accordance with Ref.[10], the authors of Ref.[8] give
the following definition.
Definition 3™ The GDFT of the s" = (S9>S)5mrSyy) € FqN,N = p'n,ged(n, p)=1 is defined to be the p’"xn

matrix of the Hasse derivatives, where ¢ is any primitive nth root of unity in some extension field of F, and

SV(x) =5, + 85X+ 5,57+t sy xN
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The GDFT of a periodic sequence over F, is indeed an invertible transformation, which is shown in Ref.[10].
If ged(NV, p)=1, then o is a primitive N th root of unity and the GDFT of an N -tuple reduces to the discrete
Fouier transform (DFT) of the same N-tuple.
The following lemma is the basis for our result in this paper.
Lemma 1. Let E, =(e;,e,,...,ey) be a N -length vector of weight 1 over F,, the single nonzero one be

the k th digit, where ke Z,,then E,(x)=e¢,x" and

k puCEL
e, e.a

k k
(ljek (Jeka(kn ( ) (n=1)(k-1)
GDFT(E,)=
k B k P k o o DE=P" D
-1 k -1 k k

where « is any primitive » th root of unity and (lj —o if i<j.
J

Now we need the following useful definition.

Definition 4. The Giinther weight of a matrix is the number of its entries that are nonzero or that lie below a
nonzero entry.

The proposition below states the important relationship between the linear complexity of the N -periodic
sequence S =(5;,5,,5,,.,5y,)" and the (G)DFT of the corresponding N-tuple S” = (54,5,,...,5y_,) -

Proposition 1. (Giinther-Blahut Theorem)™ . The linear complexity of the N-periodic sequence S = (s,,s,,

8y,.8y)" over F, of the characteristic p, where N =p'n and gcd(n,p)=1, is equal to the Giinther weight of
the GDFT of the N -tuple SV =(s54,8,,..5y,) -

2 Main Results

We have the following lemma from Ref.[8], and it will give us more information about the structure of the
GDFT of an N-tuple. Note that cyclotomic cosets will be considered relative to powers of g in the following.

Lemma 2™ For an integer 0< j<n—1, let the integer 0<k<n—1 be an element of the cyclotomic coset
C, of j modulo n, ie., k=j¢" modn for some integer r>0. Let |C, |=/,, then for any 0<z<p" -1, we
have (SN)['](Q')EFq:/ and (s")"(a")=((S") ()"

Let the sets C,,C,,...,C, be the different cyclotomic cosets modulo n (relative to powers of ¢ ), where
C={0}, and [C,|=/,1<j<h,l,2l;2..2],. By Lemma 2, a GDFT is uniquely determined by h
p’ -dimensional column vectors, one vector for each cyclotomic coset. The components of the column vector
corresponding to the cyclotomic coset C; are in Fq,j . Hence, any GDFT uniquely corresponds to a p"xh

matrix M, where the entries in the ith column of M are in Fq,l_ . The number of different matrices of this form is

@) (") .(¢")" =¢q™" =¢" which is just the number of all N -periodic sequence over F,. So we have the

following important lemma.
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Lemma 3" There is a bijection from the set of all N -periodic sequence over F, onto the set of all matrices
in GDFT form.
Suppose S =(s¢,5,,8,,...5y)" is a N -periodic sequence over F, of the characteristic p, E, =(0,0,...,0,

e,,0,..,0,0)” is another N -periodic sequence over F,, where 0<k<N -1, then Cy (8)= min  L(S+E,)

epeF, 0<k<N-1

= min W(GDFT(S+E,)= min W(GDFT(S)+GDFT(E,)), where W() denote the Glinther weight of a

epekFy 0<k<N-1 ep ek, 0<k<N-1

matrix. If SV (1) # 0, then it is obvious that min  W(GDFT(S)+GDFT(E,)) < N —1. This is just the Corollary 1 of

epeF, 0<k<N-1
Ref.[6].
Theorem 1. Let N =np",ged(n, p)=1,v=>1, and the sets C;,C,,...,C, be the cyclotomic cosets module n
(relative to powers of q), where C, ={0}, and [C;[=/,},2l;2..2],, 1<j<h, if g" > p, then there exists a

N-periodic sequence S over F, of the characteristic p such that: L(S)=N-1,Cy,(S)= N +1-n . Furthermore,

| h h
the number of such sequences is at least ¢"”’ 'Z)H(q/f —p)H(qlf -1).

j=2 j=l

Proof. Firstly, according to lemma 3, we can let S¥(1)=0, (S¥)"!(1) be arbitrary, 1<i< p' -1, but

("M #0 . Secondly, for Vi<i<n-1 and VSY(a')eF) ,ieC,2<j,<h , we can select
q

SNy e Fq,m —{ka” 'S (a')| ke Z,} since ¢ >q" > p . So SV [a'l+e,a =0, and (SV)[a']+ke,a

=0 will not be true simultanecously. Thirdly, let (SV)(a') be arbitrary, where 2<t<p’-1,1<i<n-1.
Therefore, min  W(GDFT(S+E,))2N+1-n, where E, is the same as above. So L(S)=N-1, and

epeFy 0<k<N-1

Cy.(8)= N +1-n by Proposition 1.

By Lemma 3, the number of such sequences is at least (g" )‘”V’z(qlz)pv’z...(q”’ )‘”‘Vb’z(q’2 —p)-..
h h
(p— 5 I
(@" = p)g" -1)(g" -D..(¢" -D=¢""T]¢" -] 1a" -1
j=2 Jj=1
Remark 1.1. The condition ¢ > p is loose: [, >1 when ¢>p;l, 22 when g=p. The condition in

Ref[6]is N(g—1)+1<g" < N <(¢" =1)/(g—1) . It is stricter.
Remark 1.2. If N = p”,v>1, the result of theorem 1 of Ref.[6] is trivial, but our result is nontrivial.

Lemma 4. n>2,gcd(n,2)=1, let [/ be the order of 2 module n and « be any primitive n th root of unity,
then for any A e Fz, and 1<i<n-1,gcd(i,n) =1, there exists at most one 1<k <n—1,suchthat a® + 4=0.

Proof. 1If there exists 1<k <k,<n-1 , such that a®™+4=0 and a™+4=0 , then
a" =a™ oo™ =1 & n|itky-k) < n|(k —k,) since ged(i,n)=1, we have k =k, . But it is a
contradiction.

Theorem 2. If g=2,let N =2"n,gcd(n,2)=1,n>2,v21, and the sets C,,C,,...,C, be the cyclotomic cosets
module n (relative to powers of 2), where C, ={0}, and |C; =/, 2 2..2],1<j<h, ifl, 22, then there
exists a N -periodic binary sequence S over F, such that: L(S)=N-1,Cy (S)2N+1-n+¢(n)-1,, where

! 1+l
#¢(-) is the Euler function. Furthermore, the number of such sequences is at least 2“<2'*2>H(21~f—2)
=2

[To-H]T@" 1), where 1= g(n)/1,.

J=1 J=t+2

Proof.  Let t=¢(n)/l, for 2<j<1+¢, i; is the coset leader of C;, we can suppose gcd(n,i;)=

12<j<1+t. Let SY(@?)=a™ 1<k, <n-1. For 3<j<1+z, let S¥(a")=a",1<k <n-1 and k, #k,,
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2<j'< j. We can select (s¥)"(g")e F —tka 1SV (@) | keZ,y},2< j<1+¢ since [, 22 . The remaining part of this
proof is the same as Theorem 1. Then L(S)=N-1,Cy (S)>2N+1-n+¢(n)—1, by Lemma 4 and Proposition 1.
The number of such sequence is at least (2'1)* 22" )2 (2" )2 227 =2)..2"" =2)(n-1)...(n—£)(2"* —1)..2" - 1)

=2"‘2"’2’ﬁ(2’f —2)ﬂ(n—j>f[(2’~’ -

j=(+2

Remark 2.1. If n is prijme and the order of 2 modulo n is ¢(n) =n—1, then theorem 2 is trivial. At that time,
h=2,1, =n-1,C, ={0},C, ={.2,....,n—1} .

Remark 2.2. If n is prime and the order of 2 modulo n isn’t ¢@(n) = n—1, then [, is the order of 2 modulo #,
h=t,and Cy ,(S)=2N-1,.

Theorem 3. Let N=np",gcd(n, p)=1,v=0, and the sets C,,C,,...,C, be the cyclotomic cosets module n
(relative to powers of q), where C, ={0}, and |C,|=/,,2;2..2[, 1< j<h, ifg" —1>(g—1)n, then there
exists a N -periodic sequence § over F, of the characteristic p such that: L(S)=N-1,Cy,(S)=N .

h
Furthermore, the number of such sequences is at least (q—1)g"” V’l)fll_[(ql’—l—(q—l)n) when v21, and
=2

ﬁ(q[’—l—(q—l)n) when v=0.

Jj=2
Proof. Firstly, we can let SY(1)=0,(S")(1) be arbitrary,1<i< p" -1, but (S")M(1)#0, according to

Lemma 3. Secondly, for V1<i<n-lieC,,2<j, <h, we can choose SN(ot")eF*,/.0 —f{e,a™ |e, eF;,keZN}
’ q

since ¢" —1>(g—Dn . Thirdly, let (S¥)(a’) be arbitrary, where 1<¢<p'—11<i<n-1. Therefore,
min  W(GDFT(S+E,))=N , where E, isthe same as above. So L(S)=N -1,Cy,(S)=N by Proposition 1.

eyeFy 0<k<N-1
The number of such sequences is at least (¢q—1)(¢")" 2(¢")" "..(¢")" " (¢" —1-(g-Dn)(g"” —1-(g—D)n)...

) h
g ~1=(=Dm) = (g=Dg"" [ (" ~1-(g-Tm) When v=1, (¢ ~1-(g-Dm)(g" ~1-(q~Dn)..(g" ~1~(g—1)m)

J=2
h

=T1" ~1-(g-Dn) when v=0.
j=2

Remark 3.1. The condition in Ref.[6] is N < (¢" —1)/(g—1), but our condition is n < (¢" —1)/(g —1) . So ours is
better.

Remark 3.2. If ¢=2 and N =2% —1, there exists no such a binary sequence S of period N of Theorem 3
since N (g™ —1)/(g-1).

3 Conclusions

By the GDFT of a periodic sequence, we construct some periodic sequences over F, with very large 1-error
linear complexity in this paper. Our result has less constraints on the period N of the corresponding sequence, and
can also extend the result of Ref.[5] (In Ref.[5], only binary sequence of period 2"—1 is considered). We also show
that (G)DFT of the periodic sequence is a powerful tool for sequence research. But how to get the sequence from its
(G)DFT easily is another important problem. Furthermore, how to construct periodic sequences over F, with large

k-error linear complexity (k>2) by (G)DFT is also an interesting problem.
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